首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   4篇
  国内免费   1篇
测绘学   3篇
大气科学   8篇
地球物理   23篇
地质学   58篇
海洋学   16篇
天文学   1篇
自然地理   9篇
  2023年   1篇
  2022年   3篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   3篇
  2014年   1篇
  2013年   9篇
  2012年   2篇
  2011年   6篇
  2010年   8篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   5篇
  1996年   5篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1985年   5篇
  1984年   1篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1966年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
61.
The heat capacities of lawsonite, margante, prehnite and zoisite have been measured from 5 to 350 K with an adiabatic-shield calorimeter and from 320 to 999.9 K with a differential-scanning calorimeter. At 298.15 K, their heat capacities, corrected to end-member compositions, are 66.35, 77.30, 79.13 and 83.84 cal K?1 mol?1; their entropies are 54.98, 63.01, 69.97 and 70.71 cal K?1 mol?1, respectively. Their high-temperature heat capacities are described by the following equations (in calories, K, mol): Lawsonite (298–600 K): Cp° = 66.28 + 55.95 × 10?3T ? 15.27 × 105T?2 Margarite (298–1000 K): Cp° = 101.83 + 24.17 × 10?3T ? 30.24 × 105T?2 Prehnite (298–800 K): Cp° = 97.04 + 29.99 × 10?3T ? 25.02 × 105T?2 Zoisite (298–730 K): Cp° = 98.92 + 36.36 × 10?3T ? 24.08 × 105T?2 Calculated Clapeyron slopes for univariant equilibria in the CaO-Al2O3-SiO2-H2O system compare well with experimental results in most cases. However, the reaction zoisite + quartz = anorthite + grossular + H2O and some reactions involving prehnite or margarite show disagreements between the experimentally determined and the calculated slopes which may possibly be due to disorder in experimental run products. A phase diagram, calculated from the measured thermodynamic values in conjunction with selected experimental results places strict limits on the stabilities of prehnite and assemblages such as prehnite + aragonite, grossular + lawsonite, grossular + quartz, zoisite + quartz, and zoisite + kyanite + quartz. The presence of this last assemblage in eclogites indicates that they were formed at moderate to high water pressure.  相似文献   
62.
Although the hinterland of the Solway Firth contains deposits of a variety of non-ferrous metals, and coal and steel industries grew there during the industrial revolution, the trace metal content of sediments in the firth is low, and the Solway is the last major unpolluted estuary in Britain.  相似文献   
63.
64.
65.
A Holocene ecological succession was documented using palynological, foraminiferal, and molluscan faunas sampled from an excavated trench on the margin of Bell River Bay, Lake Winnipegosis, Manitoba. The palynological data record the known gradually isostatically-induced shift from aquatic to terrestrial conditions at the site, and clearly delineates the Holocene Hypsithermal maximal warm interval (commencing here about 5500 years BP). Concurrent with this warming the site became occupied by the extinct salt tolerant gastropod Marstonia gelida and the marine foraminifer Cribroelphidium gunteri by at least 5430 years BP. Water fowl-assisted colonization of non-marine habitats by foraminifera has previously been suggested as a dispersal mechanism for other non-marine foraminiferal occurrences. However, as this relatively warm-water foraminifer (presently found as far north as Cape Cod, MA on the Atlantic USA coast, and Vancouver, BC on the Canadian Pacific coast but also found in Canadian Maritime provinces during the Hypsithermal) did not inhabit the area either prior to or following the Hypsithermal warm interval, this occurrence indicates the efficiency with which foraminifera can utilize non-selective avian transport to colonize new non-marine and marine habitats. It may be that only a few years were required for colonization of the site to occur (2000–3000 km distant from native populations); this suggests that avian transport is a much more important foraminiferal dispersal mechanism than previously realized. The appearance of foraminifera at this site may also constrain models designed to determine the time required for hydraulically injected glacial freshwater to be flushed from normally brine producing aquifers in the region.  相似文献   
66.
Recent experimental, theoretical, and thermodynamic studies permit better calibration of two reactions for geobarometry: grossular+pyrope+quartz=anorthite+enstatite grossular+almandine+quartz=anorthite+ferrosilite If both reactions are applied using the same thermodynamic data and activity models they should yield the same pressure for a given garnet-pyroxene-plagioclase-quartz assemblage. Application to a variety of high-grade terrains generally yielded excellent results. However, poor results have been obtained for high-Fe rocks which can be traced to errors in activity models for garnet and/or pyroxene. Either a two-site ideal mixing model for orthopyroxene (cf. Wood and Banno 1973) underestimates enstatite activity for high-Fe orthopyroxenes or the Ganguly and Saxena (1984) model overestimates pyrope activity in low-Mg garnets. Application of both barometers to a variety of high-grade terrains gives the following average pressures:
Terrain  相似文献   
67.
68.
The Great Zab River catchment is a major left-bank tributary of the River Tigris and drains a substantial part of the Kurdistan Region, an autonomous region of Northern Iraq. Within Kurdistan, the water resources of the Great Zab River catchment are under pressure from population increase and are utilized for potable, domestic and agricultural and industrial supply. As with many parts of the world, effective management of water resources within Kurdistan is hindered by a lack of water quality data and established background concentrations. This study therefore represents the first regional survey of river water chemistry for the Great Zab River catchment and presents data on the spatial and temporal trends in concentrations of As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sr, Zn, NO3?, SO42?, F?, Cl? and PO43?, in addition to pH, electrical conductivity, dissolved oxygen and turbidity. As a tool for underpinning the management and monitoring of water quality, background concentrations were defined for the Great Zab catchment using three methods. The influences of geogenic and anthropogenic controls upon spatial and temporal trends in water chemistry are also evaluated. The influence of geogenic loading from underlying bedrock was identifiable within the observed spatial trends, with the most notable differences found between waters sampled from the relatively more volcanic-rich Zagros zone to the north and those sampled from the lower catchment underlain by younger clay-, sand- and siltstones. The greatest anthropogenic influence, identifiable through elements such as Cl? and NO3?, is present in the more highly populated lower catchment. The background concentrations identified in the Great Zab catchment would be those expected as a result of geogenic loading with some anthropogenic influence and represent a more conservative value when compared to those such as the World Health Organization Maximum Admissible Concentration. However, background concentrations represent a powerful tool for identifying potential anthropogenic impacts on water quality and informing management of such occurrences.  相似文献   
69.
70.
The region of Ain Sefra is an arid region suffering from sand encroachment. In this study, we are calculating the shifted sand quantity and efficient wind directions during a period of 30 years (1985 to 2015) in order to classify the danger. The study shows that efficient winds in the region are characterized by their potential drift estimated at 220 till 329. This classifies the region as medium. Besides, the resultant drift potential is 76 to 99 with a migration coefficient of 0.3 which gives a medium classification to the zone and proves the Aeolian erosion complex system and its interrelation with other factors. Efficient winds generally blow from South-west to North-east with an angle of 234°. Furthermore, there are other directions causing sand drifting. Sand movement quantity is estimated between 23.03 and 15,224 m3/m/year according to effective wind threshold speed, which is 5 to 6 m/s. Autumn is the period when sand mobility is higher, but it decreases in winter. On the other hand, sand potential movement was well shown through satellite imagery between 1985 and 2015. Indeed, it closely corresponded to the previous study. It showed sand movement direction from South-west to North-east, and sand surface increase reached 16.44% of the global zone surface. Whereas, it decreased ??2.5% between 1985 and 2015. There is an important concentration of sand accumulation under the western mountain foothills along which sand moves. This shows that the ground particularities play a crucial role in this phenomenon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号