首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   3篇
  国内免费   5篇
测绘学   5篇
大气科学   24篇
地球物理   17篇
地质学   62篇
海洋学   5篇
天文学   42篇
综合类   1篇
自然地理   3篇
  2022年   2篇
  2021年   1篇
  2020年   6篇
  2019年   1篇
  2018年   14篇
  2017年   15篇
  2016年   7篇
  2015年   3篇
  2014年   17篇
  2013年   11篇
  2012年   5篇
  2011年   5篇
  2010年   6篇
  2009年   7篇
  2008年   6篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
11.
Mathew Roxy 《Climate Dynamics》2014,43(5-6):1159-1169
Over the tropical oceans, higher sea surface temperatures (SST, above 26 °C) in summer are generally accompanied by increased precipitation. However, it has been argued for the last three decades that, any monotonic increase in precipitation with respect to SST is limited to an upper threshold of 28–29.5 °C, and beyond this, the relationship fails. Based on this assessment it has often been presumed that, since the mean SSTs over the Asian monsoon basins (Indian Ocean and north-west Pacific) are mostly above the threshold, SST does not play an active role on the summer monsoon variability. It also implies that increasing SSTs due to a changing climate need not result in increasing monsoon precipitation. The current study shows that the response of precipitation to SST has a time lag, that too with a spatial variability over the monsoon basins. Taking this lag into account, the results here show that enhanced convection occurs even up to the SST maxima of 31 °C averaged over these basins, challenging any claim of an upper threshold for the SST-convection variability. The study provides us with a novel method to quantify the SST-precipitation relationship. The rate of increase is similar across the basins, with precipitation increasing at ~2 mm day?1 for an increase of 1 °C in SST. This means that even the high SSTs over the monsoon basins do play an active role on the monsoon variability, challenging previous assumptions. Since the response of precipitation to SST variability is visible in a few days, it would also imply that including realistic ocean–atmosphere coupling is crucial even for short term monsoon weather forecasts. Though recent studies suggest a weakening of the monsoon circulation over the last few decades, results here suggest an increased precipitation over the tropical monsoon regions, in a global warming environment with increased SSTs. Thus the signature of SST is found to be significant for the Asian summer monsoon, in a quantifiable manner, seamlessly through all the timescales—from short-term intraseasonal to long-term climate scales.  相似文献   
12.
A horizontal flow multimedia stormwater filter was developed and tested for hydraulic efficiency and pollutant removal efficiency. Suitability of different natural fibres such as jute, sisal, hemp, coir and oil palm was studied as filter media. Furthermore, the efficacy of different fabric filter screens made up of both woven and nonwoven textiles was also assessed. A new terminology, Universal Performance Index, was introduced. Analysis of these indices showed that jute medium, nonwoven sisal screen and media proportion 1:1:1 performed better. All of the filter combinations exhibited 100 % sediment removal at lower sediment concentration in the inflow. Percentage of discarded flow versus reference flow for the stormwater filter combinations showed that the device performed better at lower flow rates. It was also observed that the hydraulic efficiency was directly proportional to the slope and inversely proportional to the cross-sectional area of the filter. Hydraulic efficiency showed a diminishing trend as the sediment level in inflow increases. By using matrix ranking method, the gravel–coir fibre–sand filter in 1:1:1 proportion with woven sisal hemp screens was selected as the best filter combination. The field evaluation of the filter showed 97.24 % efficiency in normalizing pH and 13.27 % efficiency in reducing electrical conductivity. The removal percentages of magnesium and sodium were 32 and 34 %, respectively. But higher removal efficiencies above 70 % were recorded for total solids, nitrates and sulphates.  相似文献   
13.
Nonlinear kinetic analysis of phenol adsorption onto peat soil   总被引:1,自引:0,他引:1  
Phenolic compounds are considered as a serious organic pollutant containing in many industrial effluents particularly vulnerable when the plant discharge is disposed on land. In the present study, the phenol removal potential of peat soil as adsorption media was investigated as the adsorption process are gaining popular for polishing treatment of toxic materials in industrial wastewater. Batch experiments were performed in the laboratory to determine the adsorption isotherms of initial concentrations for 5, 8, 10, 15, and 20 mg/L and predetermined quantity of peat soil with size ranges between 425 and 200 μm poured into different containers. The effects of various parameters like initial phenol concentration, adsorbent quantity, pH, and contact time were also investigated. From experimental results, it was found that 42 % of phenol removal took place with optimized initial phenol concentration of 10 mg/L, adsorbent dose of 200 g/L, solution pH 6.0 for the equilibrium contact time of 6 h. The result exhibits that pseudo-first-order (R 2 = 0.99) and Langmuir isotherm models are fitted reasonably (R 2 = 0.91). Adams–Bohart, Thomas, Yoon–Nelson, and Wolborska models were also investigated to the column experimental data of different bed heights to predict the breakthrough curves and to determine the kinetic coefficient of the models using nonlinear regression analysis. It was found that the Thomas model is the best fitted model to predict the experimental breakthrough curves with the highest coefficient of determination, R 2 = 0.99 and lowest root mean square error and mean absolute performance error values.  相似文献   
14.
The Multi-Application Solar Telescope (MAST) is a 50 cm off-axis Gregorian telescope that has recently become operational at the Udaipur Solar Observatory (USO). An imaging spectropolarimeter is being developed as one of the back-end instruments of MAST to gain a better understanding of the evolution and dynamics of solar magnetic and velocity fields. This system consists of a narrow-band filter and a polarimeter. The polarimeter includes a linear polarizer and two sets of liquid crystal variable retarders (LCVRs). The instrument is intended for simultaneous observations in the spectral lines 6173 Å and 8542 Å, which are formed in the photosphere and chromosphere, respectively. In this article, we present results from the characterization of the LCVRs for the spectral lines of interest and the response matrix of the polarimeter. We also present preliminary observations of an active region obtained using the spectropolarimeter. For verification purposes, we compare the Stokes observations of the active region obtained from the Helioseismic Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) with that of MAST observations in the spectral line 6173 Å. We find good agreement between the two observations, considering the fact that MAST observations are limited by seeing.  相似文献   
15.
The SST-precipitation relationship in the intraseasonal variability (ISV) over the Asian monsoon region is examined using recent high quality satellite data and simulations from a state of the art coupled model, the climate forecast system version 2 (CFSv2). CFSv2 demonstrates high skill in reproducing the spatial distribution of the observed climatological mean summer monsoon precipitation along with its interannual variability, a task which has been a conundrum for many recent climate coupled models. The model also exhibits reasonable skill in simulating coherent northward propagating monsoon intraseasonal anomalies including SST and precipitation, which are generally consistent with observed ISV characteristics. Results from the observations and the model establish the existence of spatial variability in the atmospheric convective response to SST anomalies, over the Asian monsoon domain on intraseasonal timescales. The response is fast over the Arabian Sea, where precipitation lags SST by ~5 days; whereas it is slow over the Bay of Bengal and South China Sea, with a lag of ~12 days. The intraseasonal SST anomalies result in a similar atmospheric response across the basins, which consists of a destabilization of the bottom of the atmospheric column, as observed from the equivalent potential temperature anomalies near the surface. However, the presence of a relatively strong surface convergence over the Arabian Sea, due to the presence of a strong zonal gradient in SST, which accelerates the upward motion of the moist air, results in a relatively faster response in terms of the local precipitation anomalies over the Arabian Sea than over the Bay of Bengal and South China Sea. With respect to the observations, the ocean–atmosphere coupling is well simulated in the model, though with an overestimation of the intraseasonal SST anomalies, leading to an exaggerated SST-precipitation relationship. A detailed examination points to a systematic bias in the thickness of the mixed layer of the ocean model, which needs to be rectified. A too shallow (deep) mixed layer enhances (suppress) the amplitude of the intraseasonal SST anomalies, thereby amplifying (lessening) the ISV and the active-break phases of the monsoon in the model.  相似文献   
16.
17.
Advances in photogrammetry have eased the acquisition of high-resolution digital information from outcrops, enabling faster, non-destructive data capturing and improved reservoir modeling. Geocellular models for flow dynamics with in the virtual outcrop in siliciclastic deposits at different sets of sandstone facies architecture remain, however, a challenge. Digital maps of bedding, lithological contrast, spatial-temporal variations of bedding and permeability characteristics make it more easy to understand flow tortuosity in a particular architecture. An ability to precisely model these properties can improve reservoir characterization and flow modeling at different scales. Here we demonstrate the construction of realistic 2 D sandstone facies based models for a pragmatic simulation of flow dynamics using a combination of digital point clouds dataset acquired from LiDAR and field investigation of the Sandakan Formation, Sabah, Borneo.Additionally, we present methods for enhancing the accuracy of outcrop digital datasets for producing high resolution flow simulation. A well-exposed outcrop from the Sandakan Formation, Sabah, northwest Borneo having a lateral extent of 750 m was chosen in order to implement our research approach. Sandstone facies and its connectivity are well constrained by outcrop observations, data from air-permeability measurements, bilinear interpolation of permeability, grid construction and water vector analysis for flow dynamics.These proportions were then enumerated in terms of static digital outcrop model(DOM) and facies model based on sandstone facies bedding characteristics. Flow simulation of water vector analysis through each of the four sandstone facies types show persistent spatial correlation of permeability that align with either cross-bedded orientation or straight with more dispersion high quality sandstone(porosity 21.25%-41.2%and permeability 1265.20-5986.25 mD) and moderate quality sandstone(porosity 10.44%-28.75% and permeability 21.44-1023.33 mD). Whereas, in more heterolithic sandstone(wavy-to flaser-bedded and bioturbated sandstone), lateral variations in permeability show spatially non-correlated patterns over centimeters to tens of meters with mostly of low quality sandstone(porosity 3.4%-12.31% and permeability < 1 mD to 3.21 mD). These variations reflect the lateral juxtaposition in flow dynamics. It has also been resulted that the vertical connectivity and heterogeneities in terms of flow are mostly pragmatic due to the interconnected sandstone rather than the quality of sandstone.  相似文献   
18.
Many have speculated about the presence of a stiff fluid in very early stage of the universe. Such a stiff fluid was first introduced by Zel’dovich. Recently the late acceleration of the universe was studied by taking bulk viscous stiff fluid as the dominant cosmic component, but the age predicted by such a model is less than the observed value. We consider a flat universe with viscous stiff fluid and decaying vacuum energy as the cosmic components and found that the model predicts a reasonable background evolution of the universe with de Sitter epoch as end phase of expansion. More over, the model also predicts a reasonable value for the age of the present universe. We also performed a dynamical system analysis of the model and found that the end de Sitter phase predicted by the model is stable.  相似文献   
19.
FT-IR spectra of sillimanite samples from high grade regionally metamorphosed rocks belonging to the granulite terrain (amphibolite to pyroxene granulite facies) deciphers prominent OH features. Heating experiments indicate growth of prominent band at 3161cm−1. Heating above 1000°C all OH features disappear in intensity into broad features with slight shift of bands towards lower energies. Complete dehydration requires temperatures above 1000°C. Coexistence of boron and OH features are also observed in all sillimanite samples. The high temperature behaviour of sillimanite from the granulite terrain discerns that the hydrous species in sillimanite were incorporated much below 700°C, however, secondary hydration due to pegmatite activity, retrograde metamorphism and migmatisation is not ruled out. Thus a near anhydrous condition were probably not achieved during the granulite facies metamorphism in Eastern ghat granulite terrain.  相似文献   
20.
A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号