首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   858篇
  免费   27篇
  国内免费   39篇
测绘学   19篇
大气科学   52篇
地球物理   217篇
地质学   345篇
海洋学   82篇
天文学   70篇
综合类   4篇
自然地理   135篇
  2023年   3篇
  2022年   5篇
  2021年   12篇
  2020年   10篇
  2019年   12篇
  2018年   20篇
  2017年   19篇
  2016年   26篇
  2015年   11篇
  2014年   46篇
  2013年   54篇
  2012年   22篇
  2011年   55篇
  2010年   33篇
  2009年   46篇
  2008年   47篇
  2007年   34篇
  2006年   23篇
  2005年   33篇
  2004年   26篇
  2003年   31篇
  2002年   24篇
  2001年   20篇
  2000年   12篇
  1999年   23篇
  1998年   13篇
  1997年   18篇
  1996年   23篇
  1995年   13篇
  1994年   19篇
  1993年   14篇
  1992年   11篇
  1991年   9篇
  1990年   11篇
  1989年   7篇
  1988年   7篇
  1987年   10篇
  1986年   10篇
  1985年   11篇
  1984年   13篇
  1983年   10篇
  1982年   11篇
  1981年   4篇
  1980年   9篇
  1979年   11篇
  1978年   12篇
  1977年   5篇
  1976年   8篇
  1975年   5篇
  1973年   4篇
排序方式: 共有924条查询结果,搜索用时 15 毫秒
41.
Landslide deposits dam Lake Oeschinen (Oeschinensee), located above Kandersteg, Switzerland. However, past confusion differentiating deposits of multiple landslide events has confounded efforts to quantify the volume, age, and failure dynamics of the Oeschinensee rock avalanche. Here we combine field and remote mapping, topographic reconstruction, cosmogenic surface exposure dating, and numerical runout modeling to quantify salient parameters of the event. Differences in boulder lithology and deposit morphology reveal that the landslide body damming Oeschinensee consists of debris from both an older rock avalanche, possibly Kandertal, as well as the Oeschinensee rock avalanche. We distinguish a source volume for the Oeschinensee event of 37 Mm3, resulting in an estimated deposit volume of 46 Mm3, smaller than previous estimates that included portions of the Kandertal mass. Runout modeling revealed peak and average rock avalanche velocities of 65 and 45 m/s, respectively, and support a single-event failure scenario. 36Cl surface exposure dating of deposited boulders indicates a mean age for the rock avalanche of 2.3 ± 0.2 kyr. This age coincides with the timing of a paleo-seismic event identified from lacustrine sediments in Swiss lakes, suggesting an earthquake trigger. Our results help clarify the hazard and geomorphic effects of rare, large rock avalanches in alpine settings.  相似文献   
42.
We present a study on human perception of map complexity, with the objective of better understanding design decisions that may lead to undesirable levels of complexity in web maps. We compare three complexity metrics to human ratings of complexity obtained through a user survey. Specifically, we use two algorithmic approaches published by others, which measure feature congestion (FC) and subband entropy (SE), as well as our own approach of counting object types rather than individual objects. We compare these metrics with each other as well as with human complexity ratings for three maps of the same area from map providers Google Maps, Bing Maps, and OpenStreetMap. Each map design is assessed at three different scales (levels of detail). We find that (1) the FC and SE metrics appear to be adequate predictors of what humans consider complex; (2) object-type counts are slightly less successful at predicting human-rated complexity, implying that clutter is more important in perceived complexity than diversity of symbology; and (3) generalization choices do impact human complexity ratings. These findings contribute to our understanding of what makes a map complex, with implications for designing maps that are easy to use.  相似文献   
43.
A better theoretical and practical understanding of the linkage between paleo-CO2 and climate during geological history is important to enhance the sustainable development of modern human society. Development in plant physiology since the 1980s has led to the realization that fossil plants can serve as a proxy for paleoatmosphere and paleobiosphere. As a relict gymnosperm with evolutionary stasis, Ginkgo is well suited for paleoenvironmental reconstruction. This paper analyzes fossil Ginkgo species from integrated strata in the north of China using anatomic data of plant physiology. Using stomatal parameters, a trend for the paleo-CO2 level during the Early-Middle Jurassic and the Early Cretaceous was obtained, which is consistent with the estimates by GEOCARB. The trend is also similar to that of Mean Global Surface Temperature in geological time. Compared with three other atmospheric CO2 concentration parameters, the trend of paleo-CO2 level based on the stomatal parameter of the fossil Ginkgo specimens from three contiguous strata is more exact.  相似文献   
44.
Laboratory experiments on the New Zealand freshwater mussel Echyridella menziesii were used to investigate the short-term effects (7–8 days) of food type on rates of biodeposition and benthic substrate respiration. Post-feeding biodeposition rates ranged from 0.34 to 1.52?mg?g?1?h?1 (mean?=?0.50?mg g?1?h?1) and were unaffected by the addition of toxin-producing Microcystis. Addition of suspended sediment (30?mg?L?1) visibly altered substrate composition, and increased total and inorganic biodeposit production rates by 24–33% compared to mussels fed commercial phytoplankton stock. Biodeposition rates of mussels in lake bed substrates were 38% higher than those in silica sand for identical feeding regimes, suggesting that a significant proportion of material produced in this experiment could have been derived from feeding on organic matter in the lake bed sediments. Respiration rates were higher in treatments with Microcystis but were unaffected by the presence of mussels. This laboratory study suggests that biodeposition by E. menziesii is resilient to short-term exposure to Microcystis, and highlights the ability of mussels to alter benthic substrate composition by incorporating suspended sediment into substrates.  相似文献   
45.
We present the finalized catalog of solar energetic proton events detected by the Wind/EPACT instrument over the period 1996?–?2016. Onset times, peak times, peak proton intensity and onset-to-peak proton fluence are evaluated for the two available energy channels, at about 25 and 50 MeV. We describe the procedure utilized to identify the proton events and to relate them to their solar origin (in terms of flares and coronal mass ejections). The statistical relationships between the energetic protons and their origin (linear and partial correlation analysis) are reported and discussed in view of earlier findings. Finally, the different trends found in the first 8 years of Solar Cycles 23 and 24 are discussed.  相似文献   
46.
As the world’s largest importer of marine ornamental species for the aquaria, curio, home décor, and jewelry industries, the United States has an opportunity to leverage its considerable market power to promote more sustainable trade and reduce the effects of ornamental trade stress on coral reefs worldwide. Evidence indicates that collection of some coral reef animals for these trades has caused virtual elimination of local populations, major changes in age structure, and promotion of collection practices that destroy reef habitats. Management and enforcement of collection activities in major source countries such as Indonesia and the Philippines remain weak. Strengthening US trade laws and enforcement capabilities combined with increasing consumer and industry demand for responsible conservation can create strong incentives for improving management in source countries. This is particularly important in light of the March 2010 failure of the parties to the Convention on International Trade in Endangered Species (CITES) to take action on key groups of corals.  相似文献   
47.
Salt marshes accrete both organic and inorganic sediments. Here we present analytical and numerical models of salt marsh sedimentation that, in addition to capturing inorganic processes, explicitly account for above- and belowground organic processes including root growth and decay of organic carbon. The analytical model is used to examine the bias introduced by organic processes into proxy records of sedimentation, namely 137Cs and 210Pb. We find that accretion rates estimated using 210Pb will be less than accretion rates estimated using the 137Cs peak in steadily accreting marshes if (1) carbon decay is significant and (2) data for 210Pb extend below the 137Cs peak. The numerical model expands upon the analytical model by including belowground processes such as compaction and root growth, and by explicitly tracking the evolution of aboveground biomass and its effect on sedimentation rates. Using the numerical model we explore how marsh stratigraphy responds to sediment supply and the rate of sea-level rise. It is calibrated and tested using an extensive data set of both marsh stratigraphy and measurements of vegetation dynamics in a Spartina alterniflora marsh in South Carolina, USA. We find that carbon accumulation in marshes is nonlinearly related to both the supply of inorganic sediment and the rate of sea-level rise; carbon accumulation increases with sea-level rise until sea-level rise reaches a critical rate that drowns the marsh vegetation and halts carbon accumulation. The model predicts that changes in carbon storage resulting from changing sediment supply or sea-level rise are strongly dependent on the background sediment supply: if inorganic sediment supply is reduced in an already sediment poor marsh the storage of organic carbon will increase to a far greater extent than in a sediment-rich marsh, provided that the rate of sea-level rise does not exceed a threshold. These results imply that altering sediment supply to estuaries (e.g., by damming upstream rivers or altering littoral sediment transport) could lead to significant changes in the carbon budgets of coastal salt marshes.  相似文献   
48.
49.
50.
When formulating a hydrologic model, scientists rely on parameterizations of multiple processes based on field data, but literature review suggests that more frequently people select parameterizations that were included in pre-existing models rather than re-evaluating the underlying field experiments. Problems arise when limited field data exist, when “trusted” approaches do not get reevaluated, and when sensitivities fundamentally change in different environments. The physics and dynamics of snow interception by conifers is just such a case, and it is critical to simulation of the water budget and surface albedo. The most commonly used interception parameterization is based on data from four trees from one site, but results from this field study are not directly transferable to locations with relatively warmer winters, where the dominant processes differ dramatically. Here, we combine a literature review with model experiments to demonstrate needed improvements. Our results show that the choice of model form and parameters can vary the fraction of snow lost through interception by as much as 30%. In most simulations, the warming of mean winter temperatures from −7 to 0°C reduces the modelled fraction of snow under the canopy compared to the open, but the magnitude of simulated decrease varies from about 10% to 40%. The range of results is even larger when considering models that neglect the melting of in-canopy snow in higher-humidity environments where canopy sublimation plays less of a role. Thus, we recommend that all models represent canopy snowmelt and include representation of increased loading due to increased adhesion and cohesion when temperatures rise from −3 to 0°C. In addition to model improvements, field experiments across climates and forest types are needed to investigate how to best model the combination of dynamically changing forest cover and snow cover to better understand and predict changes to albedo and water supplies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号