首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   0篇
大气科学   55篇
地球物理   2篇
地质学   4篇
海洋学   4篇
  2021年   1篇
  2020年   1篇
  2016年   7篇
  2015年   5篇
  2014年   3篇
  2013年   6篇
  2012年   6篇
  2011年   7篇
  2010年   2篇
  2009年   3篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1995年   1篇
  1991年   2篇
排序方式: 共有65条查询结果,搜索用时 343 毫秒
11.
This study presents an analysis of climate-change impacts on the water resources of two basins located in northern France, by integrating four sources of uncertainty: climate modelling, hydrological modelling, downscaling methods, and emission scenarios. The analysis focused on the evolution of the water budget, the river discharges and piezometric heads. Seven hydrological models were used, from lumped rainfall-discharge to distributed hydrogeological models, and led to quite different estimates of the water-balance components. One of the hydrological models, CLSM, was found to be unable to simulate the increased water stress and was, thus, considered as an outlier even though it gave fair results for the present day compared to observations. Although there were large differences in the results between the models, there was a marked tendency towards a decrease of the water resource in the rivers and aquifers (on average in 2050 about ?14 % and ?2.5 m, respectively), associated with global warming and a reduction in annual precipitation (on average in 2050 +2.1 K and ?3 %, respectively). The uncertainty associated to climate models was shown to clearly dominate, while the three others were about the same order of magnitude and 3–4 times lower. In terms of impact, the results found in this work are rather different from those obtained in a previous study, even though two of the hydrological models and one of the climate models were used in both studies. This emphasizes the need for a survey of the climatic-change impact on the water resource.  相似文献   
12.
The focus of this study is to document the possible role of the southern subtropical Indian Ocean in the transitions of the monsoon-ENSO system during recent decades. Composite analyses of sea surface temperature (SST) fields prior to El Niño-Southern Oscillation (ENSO), Indian summer monsoon (ISM), Australian summer monsoon (AUSM), tropical Indian Ocean dipole (TIOD) and Maritime Continent rainfall (MCR) indices reveal the southeast Indian Ocean (SEIO) SSTs during late boreal winter as the unique common SST precursor of these various phenomena after the 1976–1977 regime shift. Weak (strong) ISMs and AUSMs, El Niños (La Niñas) and positive (negative) TIOD events are preceded by significant negative (positive) SST anomalies in the SEIO, off Australia during boreal winter. These SST anomalies are mainly linked to subtropical Indian Ocean dipole events, recently studied by Behera and Yamagata (Geophys Res Lett 28:327–330, 2001). A wavelet analysis of a February–March SEIO SST time series shows significant spectral peaks at 2 and 4–8 years time scales as for ENSO, ISM or AUSM indices. A composite analysis with respect to February–March SEIO SSTs shows that cold (warm) SEIO SST anomalies are highly persistent and affect the westward translation of the Mascarene high from austral to boreal summer, inducing a weakening (strengthening) of the whole ISM circulation through a modulation of the local Hadley cell during late boreal summer. At the same time, these subtropical SST anomalies and the associated SEIO anomalous anticyclone may be a trigger for both the wind-evaporation-SST and wind-thermocline-SST positive feedbacks between Australia and Sumatra during boreal spring and early summer. These positive feedbacks explain the extraordinary persistence of the SEIO anomalous anticyclone from boreal spring to fall. Meanwhile, the SEIO anomalous anticyclone favors persistent southeasterly wind anomalies along the west coast of Sumatra and westerly wind anomalies over the western Pacific, which are well-known key factors for the evolution of positive TIOD and El Niño events, respectively. A correlation analysis supports these results and shows that SEIO SSTs in February–March has higher predictive skill than other well-established ENSO predictors for forecasting Niño3.4 SST at the end of the year. This suggests again that SEIO SST anomalies exert a fundamental influence on the transitions of the whole monsoon-ENSO system during recent decades.  相似文献   
13.
The surface ocean explains a considerable part of the inter-annual Tropical Atlantic variability. The present work makes use of observational datasets to investigate the effect of freshwater flow on sea surface salinity (SSS) and temperature (SST) in the Gulf of Guinea. In particular, the Congo River discharges a huge amount of freshwater into the ocean, affecting SSS in the Eastern Equatorial Atlantic (EEA) and stratifying the surface layers. The hypothesis is that an excess of river runoff emphasize stratification, influencing the ocean temperature. In fact, our findings show that SSTs in the Gulf of Guinea are warmer in summers following an anomalously high Congo spring discharge. Vice versa, when the river discharges low freshwater, a cold anomaly appears in the Gulf. The response of SST is not linear: temperature anomalies are considerable and long-lasting in the event of large freshwater flow, while in dry years they are less remarkable, although still significant. An excess of freshwater seems able to form a barrier layer, which inhibits vertical mixing and the entrainment of the cold thermocline water into the surface. Other processes may contribute to SST variability, among which the net input of atmospheric freshwater falling over EEA. Likewise the case of continental runoff from Congo River, warm anomalies occur after anomalously rainy seasons and low temperatures follow dry seasons, confirming the effect of freshwater on SST. However, the two sources of freshwater anomaly are not in phase, so that it is possible to split between atypical SST following continental freshwater anomalies and rainfall anomalies. Also, variations in air-sea fluxes can produce heating and cooling of the Gulf of Guinea. Nevertheless, atypical SSTs cannot be ascribed to fluxes, since the temperature variation induced by them is not sufficient to explain the SST anomalies appearing in the Gulf after anomalous peak discharges. The interaction processes between river runoff, sea surface salinity and temperature play an effective role in the interannual variability in the EEA region. Our results add a new source of variability in the area, which was often neglected by previous studies.  相似文献   
14.
A multivariate analysis of the upper ocean thermal structure is used to examine the recent long-term changes and decadal variability in the upper ocean heat content as represented by model-based ocean reanalyses and a model-independent objective analysis. The three variables used are the mean temperature above the 14°C isotherm, its depth and a fixed depth mean temperature (250?m mean temperature). The mean temperature above the 14°C isotherm is a convenient, albeit simple, way to isolate thermodynamical changes by filtering out dynamical changes related to thermocline vertical displacements. The global upper ocean observations and reanalyses exhibit very similar warming trends (0.045°C per decade) over the period 1965–2005, superimposed with marked decadal variability in the 1970s and 1980s. The spatial patterns of the regression between indices (representative of anthropogenic changes and known modes of internal decadal variability), and the three variables associated with the ocean heat content are used as fingerprint to separate out the different contributions. The choice of variables provides information about the local heat absorption, vertical distribution and horizontal redistribution of heat, this latter being suggestive of changes in ocean circulation. The discrepancy between the objective analysis and the reanalyses, as well as the spread among the different reanalyses, are used as a simple estimate of ocean state uncertainties. Two robust findings result from this analysis: (1) the signature of anthropogenic changes is qualitatively different from those of the internal decadal variability associated to the Pacific Interdecadal Oscillation and the Atlantic Meridional Oscillation, and (2) the anthropogenic changes in ocean heat content do not only consist of local heat absorption, but are likely related with changes in the ocean circulation, with a clear shallowing of the tropical thermocline in the Pacific and Indian oceans.  相似文献   
15.
The impact of diurnal SST coupling and vertical oceanic resolution on the simulation of the Indian Summer Monsoon (ISM) and its relationships with El Ni?o-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events are studied through the analysis of four integrations of a high resolution Coupled General Circulation Model (CGCM), but with different configurations. The only differences between the four integrations are the frequency of coupling between the ocean and atmosphere for the Sea Surface Temperature (SST) parameter (2 vs. 24?h coupling) and/or the vertical oceanic resolution (31 vs. 301 levels) in the CGCM. Although the summer mean tropical climate is reasonably well captured with all the configurations of the CGCM and is not significantly modified by changing the frequency of SST coupling from once to twelve per day, the ISM–ENSO teleconnections are rather poorly simulated in the two simulations in which SST is exchanged only once per day, independently of the vertical oceanic resolution used in the CGCM. Surprisingly, when 2?h SST coupling is implemented in the CGCM, the ISM–ENSO teleconnection is better simulated, particularly, the complex lead-lag relationships between the two phenomena, in which a weak ISM occurs during the developing phase of an El Ni?o event in the Pacific, are closely resembling the observed ones. Evidence is presented to show that these improvements are related to changes in the characteristics of the model’s El Ni?o which has a more realistic evolution in its developing and decaying phases, a stronger amplitude and a shift to lower frequencies when a 2-hourly SST coupling strategy is implemented without any significant changes in the basic state of the CGCM. As a consequence of these improvements in ENSO variability, the lead relationships between Indo-Pacific SSTs and ISM rainfall resemble the observed patterns more closely, the ISM–ENSO teleconnection is strengthened during boreal summer and ISM rainfall power spectrum is in better agreement with observations. On the other hand, the ISM–IOD teleconnection is sensitive to both SST coupling frequency and the vertical oceanic resolution, but increasing the vertical oceanic resolution is degrading the ISM–IOD teleconnection in the CGCM. These results highlight the need of a proper assessment of both temporal scale interactions and coupling strategies in order to improve current CGCMs. These results, which must be confirmed with other CGCMs, have also important implications for dynamical seasonal prediction systems or climate change projections of the monsoon.  相似文献   
16.
This paper explores the impact of intra-daily Sea Surface Temperature (SST) variability on the tropical large-scale climate variability and differentiates it from the response of the system to the forcing of the solar diurnal cycle. Our methodology is based on a set of numerical experiments based on a fully global coupled ocean–atmosphere general circulation in which we alter (1) the frequency at which the atmosphere sees the SST variations and (2) the amplitude of the SST diurnal cycle. Our results highlight the complexity of the scale interactions existing between the intra-daily and inter-annual variability of the tropical climate system. Neglecting the SST intra-daily variability results, in our CGCM, to a systematic decrease of 15% of El Ni?o—Southern Oscillation (ENSO) amplitude. Furthermore, ENSO frequency and skewness are also significantly modified and are in better agreement with observations when SST intra-daily variability is directly taken into account in the coupling interface of our CGCM. These significant modifications of the SST interannual variability are not associated with any remarkable changes in the mean state or the seasonal variability. They can therefore not be explained by a rectification of the mean state as usually advocated in recent studies focusing on the diurnal cycle and its impact. Furthermore, we demonstrate that SST high frequency coupling is systematically associated with a strengthening of the air-sea feedbacks involved in ENSO physics: SST/sea level pressure (or Bjerknes) feedback, zonal wind/heat content (or Wyrtki) feedback, but also negative surface heat flux feedbacks. In our model, nearly all these results (excepted for SST skewness) are independent of the amplitude of the SST diurnal cycle suggesting that the systematic deterioration of the air-sea coupling by a daily exchange of SST information is cascading toward the major mode of tropical variability, i.e. ENSO.  相似文献   
17.
Climate models suggest that anthropogenic emissions are likely to induce an important drying during summer over most of Europe in the late 21st century. However, the amplitude of the associated decrease in precipitation strongly varies among the different climate models. In order to reduce this spread, it is first necessary to identify its causes and the associated physical mechanisms. Consequently, the focus of this paper is to better estimate the role of large scale circulation (LSC) in precipitation changes over Europe using a multi-model framework and then to characterize the LSC changes using the weather regime paradigm. We show that LSC changes directly lead to a decrease of precipitation over northwestern Europe. This circulation-driven decrease in rainfall is mainly linked to an increase (decrease) of the occurrence of positive (negative) phase of the North Atlantic Oscillation regime. LSC is also responsible for a significant part of the models spread in precipitation changes over these regions. Over southern Europe, the role of LSC changes on multi-model mean precipitation changes is generally weak. We also show that the precipitation anomalies directly induced by LSC modifications seem to be further amplified through local feedbacks.  相似文献   
18.
Pascal Terray 《Climate Dynamics》2011,36(11-12):2171-2199
The main goal of this paper is to shed additional light on the reciprocal dynamical linkages between mid-latitude Southern Hemisphere climate and the El Ni?o-Southern Oscillation (ENSO) signal. While our analysis confirms that ENSO is a dominant source of interannual variability in the Southern Hemisphere, it is also suggested here that subtropical dipole variability in both the Southern Indian and Atlantic Oceans triggered by Southern Hemisphere mid-latitude variability may also provide a controlling influence on ENSO in the equatorial Pacific. This subtropical forcing operates through various coupled air?Csea feedbacks involving the propagation of subtropical sea surface temperature (SST) anomalies into the deep tropics of the Atlantic and Indian Oceans from boreal winter to boreal spring and a subsequent dynamical atmospheric response to these SST anomalies linking the three tropical basins at the beginning of the boreal spring. This atmospheric response is characterized by a significant weakening of the equatorial Atlantic and Indian Inter-Tropical Convergence Zone (ITCZ). This weakened ITCZ forces an equatorial ??cold Kelvin wave?? response in the middle to upper troposphere that extends eastward from the heat sink regions into the western Pacific. By modulating the vertical temperature gradient and the stability of the atmosphere over the equatorial western Pacific Ocean, this Kelvin wave response promotes persistent zonal wind and convective anomalies over the western equatorial Pacific, which may trigger El Ni?o onset at the end of the boreal winter. These different processes explain why South Atlantic and Indian subtropical dipole time series indices are highly significant precursors of the Ni?o34 SST index several months in advance before the El Ni?o onset in the equatorial Pacific. This study illustrates that the atmospheric internal variability in the mid-latitudes of the Southern Hemisphere may significantly influence ENSO variability. However, this surprising relationship is observed only during recent decades, after the so-called 1976/1977 climate regime shift, suggesting a possible linkage with global warming or decadal fluctuations of the climate system.  相似文献   
19.
The seasonal cycle in coupled ocean-atmosphere general circulation models   总被引:1,自引:0,他引:1  
We examine the seasonal cycle of near-surface air temperature simulated by 17 coupled ocean-atmosphere general circulation models participating in the Coupled Model Intercomparison Project (CMIP). Nine of the models use ad hoc “flux adjustment” at the ocean surface to bring model simulations close to observations of the present-day climate. We group flux-adjusted and non-flux-adjusted models separately and examine the behavior of each class. When averaged over all of the flux-adjusted model simulations, near-surface air temperature falls within 2?K of observed values over the oceans. The corresponding average over non-flux-adjusted models shows errors up to ~6?K in extensive ocean areas. Flux adjustments are not directly applied over land, and near-surface land temperature errors are substantial in the average over flux-adjusted models, which systematically underestimates (by ~5?K) temperature in areas of elevated terrain. The corresponding average over non-flux-adjusted models forms a similar error pattern (with somewhat increased amplitude) over land. We use the temperature difference between July and January to measure seasonal cycle amplitude. Zonal means of this quantity from the individual flux-adjusted models form a fairly tight cluster (all within ~30% of the mean) centered on the observed values. The non-flux-adjusted models perform nearly as well at most latitudes. In Southern Ocean mid-latitudes, however, the non-flux-adjusted models overestimate the magnitude of January-minus-July temperature differences by ~5?K due to an overestimate of summer (January) near-surface temperature. This error is common to five of the eight non-flux-adjusted models. Also, over Northern Hemisphere mid-latitude land areas, zonal mean differences between July and January temperatures simulated by the non-flux-adjusted models show a greater spread (positive and negative) about observed values than results from the flux-adjusted models. Elsewhere, differences between the two classes of models are less obvious. At no latitude is the zonal mean difference between averages over the two classes of models greater than the standard deviation over models. The ability of coupled GCMs to simulate a reasonable seasonal cycle is a necessary condition for confidence in their prediction of long-term climatic changes (such as global warming), but it is not a sufficient condition unless the seasonal cycle and long-term changes involve similar climatic processes. To test this possible connection, we compare seasonal cycle amplitude with equilibrium warming under doubled atmospheric carbon dioxide for the models in our data base. A small but positive correlation exists between these two quantities. This result is predicted by a simple conceptual model of the climate system, and it is consistent with other modeling experience, which indicates that the seasonal cycle depends only weakly on climate sensitivity.  相似文献   
20.
Variations in the Earth's climate have had considerable impact on society sectors such as energy, agriculture, fisheries, water resources, and environmental quality. This natural climate variability must be documented and understood in order to assess its potential impacts, its predictability and relationships with human-induced changes. Understanding the mechanisms responsible for natural variability proceeds through a strategy based on the use of a hierarchy of climate models and careful data analysis. In this paper, we examine primarily climate fluctuations on interannual-to-decadal time scales and their climate signature in terms of precipitation and temperature. First, space and time characteristics of two of the major variability modes, the Southern Oscillation (and its associated teleconnection patterns) and the North Atlantic Oscillation, are documented with a focus onto the midlatitudes of the Northern Hemisphere. Then, the current hypothesis regarding the nature of these modes (forced, coupled or internal) are reviewed based on both simulation results and statistical data analyses. Next, we address the potential predictability of seasonal surface temperature and land precipitation using an ensemble of atmospheric model simulations forced by observed sea surface temperatures. Finally, we review the relationships between the atmospheric variability modes and the recent low-frequency trends and suggest a possible influence of anthropogenic effects on these low-frequency variations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号