首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   10篇
  国内免费   1篇
测绘学   3篇
大气科学   7篇
地球物理   45篇
地质学   53篇
海洋学   12篇
天文学   15篇
自然地理   9篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   12篇
  2012年   7篇
  2011年   3篇
  2010年   5篇
  2009年   7篇
  2008年   11篇
  2007年   10篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   10篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1972年   1篇
排序方式: 共有144条查询结果,搜索用时 31 毫秒
31.
Eruption styles on the subaerial East Rift Zone (ERZ) of Kilauea volcano are reviewed and a classification scheme for the different types of eruption is proposed. The various eruption types are produced by differing thermal and driving pressure behaviour in the feeder dikes. Existing evidence is reviewed and new evidence presented of the types and volumes of eruptions on the Puna Ridge, which is the submarine extension of the ERZ. Eruptions on the Puna Ridge fall into the same five classes as, and are of comparable volume to, those on the subaerial ERZ. Evidence is presented which suggests that feeder dikes for Puna Ridge eruptions are more thermally viable than those feeding subaerial eruptions, and this difference causes long-lived, large-volume eruptions to be more common on the Puna Ridge than on the subaerial ERZ. This systematic variation in thermal viability may be due to increased dike width for Puna Ridge dikes or increased pressure gradients driving magma flow. Lateral dike emplacement is common to many basaltic systems including on other Hawaiian volcanoes, in Iceland and at mid-ocean ridges. The systematic trend inferred for the ERZ of Kilauea implies that in the other systems large-volume eruptions may also be more common at great distances than they are close to the magma centre.  相似文献   
32.
A new in‐situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes horizontal wells filled with reactive media to passively treat contaminated groundwater in‐situ. The approach involves the use of large‐diameter directionally drilled horizontal wells filled with granular reactive media generally installed parallel to the direction of groundwater flow. The design leverages natural “flow‐focusing” behavior induced by the high in‐well hydraulic conductivity of the reactive media relative to the aquifer hydraulic conductivity to passively capture and treat proportionally large volumes of groundwater within the well. Clean groundwater then exits the horizontal well along its downgradient sections. Many different types of solid granular reactive media are already available (e.g., zero valent iron, activated carbon, ion exchange resins, zeolite, apatite, chitin); therefore, this concept could be used to address a wide range of contaminants. Three‐dimensional flow and transport simulations were completed to assess the general hydraulic performance, capture zones, residence times, effects of aquifer heterogeneity, and treatment effectiveness of the concept. The results demonstrate that capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and that reductions in downgradient concentrations and contaminant mass flux are nearly immediate. For a representative example, the predicted treatment zone width for the HRX Well is approximately 27 to 44 feet, and contaminant concentrations immediately downgradient of the HRX Well decreased an order of magnitude within 10 days. A series of laboratory‐scale physical tests (i.e., tank tests) were completed that further demonstrate the concept and confirm model prediction performance. For example, the breakthrough time, peak concentration and total mass recovery of methylene blue (reactive tracer) was about 2, 35, and 20 times (respectively) less than chloride (conservative tracer) at the outlet of the tank‐scale HRX Well.  相似文献   
33.
The Permian Phosphoria Rock Complex of the western USA contains an enigmatic assemblage of bioelemental rocks (i.e. phosphorites and cherts) that accumulated in a depositional system with no modern analogue. This study utilizes detailed sedimentological, stratigraphic and petrographic examination to evaluate the genetic relations of phosphorites, spiculitic chert and carbonates of the Ervay cycle (depositional sequence) and propose a unified oceanographic model for their deposition. The Ervay cycle contains three marine and one terrestrial facies association, each of which composes the bulk of a single lithostratigraphic unit. The marine facies associations include: (i) granular phosphorites (Retort Member); (ii) spiculitic cherty dolostones (Tosi Member); and (iii) marine to peritidal carbonates (Ervay Member). Red beds and intercalated gypsum (Goose Egg Formation) accumulated in the vast desert adjacent to the sea. The three marine members are chronostratigraphically distinct, successive and conformably stacked. They are not coeval facies belts. They reflect the progressive evolution of the epicontinental sea from the location of: (i) authigenic phosphogenesis (lowstand to transgression); to (ii) a glass ramp with biosiliceous (sponge) deposition (transgression); to (iii) a carbonate ramp (regression). This succession of switching biochemical sediment factories records the evolution of sea-level, nutrient supply, upwelling, oxygenation and dissolved Si. Intense upwelling, potentially coupled with aeolian input, led to sedimentary condensation and phosphogenesis. Decreased upwelling intensity during transgression increased oxygenation sufficiently for a siliceous sponge benthos. Sponges were favoured over biocalcifiers due to elevated dissolved silica and a low carbonate saturation state. The cessation of sponge dominance and transition to a carbonate ramp occurred due to decreasing upwelling intensity, Si drawdown and an increased carbonate saturation state. These results provide insight into the role of Si loading in faunal turnover on glass ramps and highlight how differences in dissolved Si utilizers in pre-Cretaceous versus post-Cretaceous upwelling systems influence the resultant deposits.  相似文献   
34.
The past decade has brought substantial transition to South Africa. The introduction of democracy in 1994 has yielded important political and socioeconomic transformations affecting millions of people. Here, we explore the impact of institutional and structural changes on the availability and management of fuelwood, a key natural resource in rural South Africa. As in other developing regions, many households depend on natural resources for both sustenance and energy needs. Drawing on qualitative data from 32 interviews, our objective is to describe, from the perspective of the respondents, (1) resource scarcity, (2) the underlying causes of resource scarcity, (3) the role of traditional authority in managing resources, and (4) strategies used by community members in the face of resource scarcity. The results have important implications for the well-being of both social and natural systems in many transitional, rural developing societies.  相似文献   
35.
A multi-sensor study of the leading-line, trailing-stratiform (LLTS) mesoscale convective system (MCS) that developed over Texas in the afternoon of 7 April 2002 is presented. The analysis relies mainly on operationally available data sources such as GOES East satellite imagery, WSR-88D radar data and NLDN cloud-to-ground flash data. In addition, total lightning information in three dimensions from the LDAR II network in the Dallas–Ft. Worth region is used.GOES East satellite imagery revealed several ring-like cloud top structures with a diameter of about 100 km during MCS formation. The Throckmorton tornadic supercell, which had formed just ahead of the developing linear MCS, was characterized by a high CG+ percentage below a V-shaped cloud top overshoot north of the tornado swath. There were indications of the presence of a tilted electrical dipole in this storm. Also this supercell had low average CG− first stroke currents and flash multiplicities. Interestingly, especially the average CG+ flash multiplicity in the Throckmorton storm showed oscillations with an estimated period of about 15 min.Later on, in the mature LLTS MCS, the radar versus lightning activity comparison revealed two dominant discharge regions at the back of the convective leading edge and a gentle descent of the upper intracloud lightning region into the trailing stratiform region, apparently coupled to hydrometeor sedimentation. There was evidence for an inverted dipole in the stratiform region of the LLTS MCS, and CG+ flashes from the stratiform region had high first return stroke peak currents.  相似文献   
36.
37.
This paper evaluates current knowledge of Laurentide eskers in Canada in the light of developments in glacier hydrology and glacial sedimentology. Questions regarding the morpho-sedimentary relations of eskers, the synchroneity and operation of R-channel systems, the role of supraglacial meltwater input and proglacial water bodies, the controls on esker pattern, and the glaciodynamic condition of the ice sheet at the time of esker formation are discussed. A morphologic classification of eskers is proposed. Five types of eskers are identified and investigated. Type I eskers likely formed in extensive, synchronous, dendritic R-channel networks under regionally stagnant ice that terminated in standing water. Type II eskers likely formed in short, subaqueously terminating R-channels or reentrants close to an ice front or grounding line that may have actively retreated during esker sedimentation. Type III eskers plausibly formed in short R-channels that drained either to interior lakes in, or tunnel channels under, regionally stagnant ice. Type IV eskers may have formed as time-transgressive segments in short, subaerially terminating R-channels (or reentrants) that developed close to the ice margin as the ice front underwent stagnation-zone retreat or downwasted and backwasted regionally (stagnant ice); however, formation in synchronous R-channels cannot be discounted on the basis of reported observations. Type V eskers may have formed in H-channels that terminated subaerially. The spatial distribution of these esker types is discussed. The factors that determined Laurentide R-channel pattern and operation were likely a complex combination of (i) supraglacial meltwater discharge, (ii) the number and location of sink holes, (iii) the ice surface slope, thickness and velocity, and (iv) the permeability, topography and rigidity of the bed. These factors cause and respond to changes in ice dynamics and thermal regime over the glacial cycle.  相似文献   
38.
Mountainous headwaters consist of different landscape units including forests, meadows and wetlands. In these headwaters it is unclear which landscape units contribute what percentage to baseflow. In this study, we analysed spatiotemporal differences in baseflow isotope and hydrochemistry to identify catchment‐scale runoff contribution. Three baseflow snapshot sampling campaigns were performed in the Swiss pre‐alpine headwater catchment of the Zwäckentobel (4.25 km2) and six of its adjacent subcatchments. The spatial and temporal variability of δ2H, Ca, DOC, AT, pH, SO4, Mg and H4SiO4 of streamflow, groundwater and spring water samples was analysed and related to catchment area and wetland percentage using bivariate and multivariate methods. Our study found that in the six subcatchments, with variable arrangements of landscape units, the inter‐ and intra catchment variability of isotopic and hydrochemical compositions was small and generally not significant. Stream samples were distinctly different from shallow groundwater. An upper spring zone located near the water divide above 1,400 m and a larger wetland were identified by their distinct spatial isotopic and hydrochemical composition. The upstream wetland percentage was not correlated to the hydrochemical streamflow composition, suggesting that wetlands were less connected and act as passive features with a negligible contribution to baseflow runoff. The isotopic and hydrochemical composition of baseflow changed slightly from the upper spring zone towards the subcatchment outlets and corresponded to the signature of deep groundwater. Our results confirm the need and benefits of spatially distributed snapshot sampling to derive process understanding of heterogeneous headwaters during baseflow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
39.
The old potable water network in Byblos city is provided mainly from Ibrahim River nearby. Located in a seismic region, the aging network needs to tolerate seismic threats; thus, damage to the potable water network needs to be assessed. Therefore, first, enhancing infrastructure resilience is briefly discussed, noting briefly the need to bridge specifically between heritage risk management and engineering. Second, Byblos potable water network, seismicity, and geology are detailed. Third, the potable water network damage assessment methodology is presented. It encompasses hazard assessment, network inventory, damage functions, and model development. Data and maps are prepared using the Geographic Information System and then modeled in Ergo platform to obtain the damage to buried pipelines in the event of likely earthquake scenarios. Ergo is updated to consider recommended ground motion prediction equations (GMPEs) for the Middle East region, to consider amplification of the peak ground velocity in hazard maps due to different soil types, and to consider adequate fragility functions. Moreover, different Byblos geotechnical maps, landslide hazard, and liquefaction are investigated and embedded. Damage results to pipelines are dependent on the hazard maps obtained using different GMPEs and geotechnical maps. Asbestos cement pipelines will be most damaged, followed by polyethylene and then by ductile iron. Finally, recommendations are offered to consider an improved sustainable rehabilitation solution. The study provides a better understanding of Byblos potable water network and allows the establishment of a sustainable and resilience-to-earthquake preparedness strategy and recovery plan.  相似文献   
40.
This paper addresses the treatment of the rotation of the internal components of the triple friction pendulum (TFP) isolation bearing in a numerical model previously presented by the authors. The numerical model is based on the kinematic behavior of the individual sliding surfaces and the constitutive relationships between them. The modification suggested in this paper improves the performance of the model so that the results exactly match that of the one‐dimensional piecewise linear behavior previously derived for the TFP bearing for restricted properties. The improved numerical model simulates bidirectional shear response and places no a priori restrictions on the bearing properties. The modification is put in the form of a technical communication so that the notation used and the basis of the correction could be presented with adequate clarity and so that an example of the benefit of the correction could be presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号