首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   6篇
  国内免费   1篇
测绘学   1篇
大气科学   11篇
地球物理   40篇
地质学   12篇
海洋学   12篇
天文学   29篇
自然地理   13篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2014年   6篇
  2013年   5篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   9篇
  2008年   2篇
  2007年   9篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   6篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1972年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
31.
Mössbauer spectra of biotites (1) and (2) with relative iron concentrations ~1:1·6 and of their oxidation products are recorded at 4 K in zero field and in applied fields up to 5 T. Magnetic susceptibility data are also reported. The results show that Fe III spins are in a ferromagnetic configuration in the c-plane in both biotites. Partial oxidation of biotite (1) leads to a canted ferromagnetic structure, while complete oxidation of biotite (2) yields an antiferromagnetic spin configuration. Nearest-neighbour antiferromagnetic Fe III-O-Fe III, and ferromagnetic Fe III-O-Fe II and Fe II-O-Fe II superexchange can account for the results. For biotites with higher concentrations of iron, Fe II and Fe III seem to be distributed randomly in the triangular lattice. From susceptibility results in biotites dilute in iron, an estimate of the ratio of nearest-neighbour and next-nearest neighbour magnetic interaction in the triangular lattice is derived.  相似文献   
32.
33.
34.
35.
36.
A Kuroshio damping phenomenon of a few days scale caused by a strong wind was studied using the Princeton Ocean Model (POM) and a two-way nesting model for the POM. We simulated an idealized eastward Kuroshio in a zonal channel in terms of the inflow/outflow condition at the western/eastern boundaries and examined responses of the idealized Kuroshio to a strong easterly wind. This study was motivated by observations of JMA research vessel Shumpu Maru which reported deformation of isopycnals and damping of the Kuroshio before and after the attack of Typhoon 6804. Deformation of isopycnals and damping of the Kuroshio are found to depend on magnitude of wind stress, intensity of stratification, distance of the Kuroshio from coast, and grid resolution. The deformation of isopycnals is related to the vertical circulation pattern caused by the divergence/convergence of the onshore Ekman transport. A simple stratification model composed of Niiler (1969)'s modification of the Ekman transport and the coastal boundary is proposed to explain the damping phenomenon. An idealized cape was added in other experiments in order to study whether the Kuroshio damping mechanism discussed here works in three dimensions. The newly developed two-way nesting model for the POM was applied for this experiment and made it possible to clarify more detailed features of response in the nested area than did the coarse grid model.  相似文献   
37.
Abstract

The first substantial radiative effects of the El Chichón volcanic cloud were observed in Fairbanks in the winter of 1982/83. Winter is the time when stratospheric temperatures can vary widely owing to sudden stratospheric warmings, and interannual variations are large. Mean monthly temperatures of the stratosphere were analysed for the 50‐, 40‐, 30‐, 25‐, 20‐, 15‐, and 10‐mb levels, with the greatest density of the volcanic cloud expected to be around the 20‐mb level. For the four winter months, December 1982 to March 1983, an increase in temperature was observed. This increase was not only observed in Fairbanks, but also for two other stations (McGrath and Anchorage) close by, for which we also analysed the stratospheric temperatures.

Further, the interdiurnal variation of temperature (the radiosonde ascents are made at 0200 and 1400 local time) showed marked and significant increases for all three stations. This can be explained by the fact that during daytime the volcanic cloud is warmed by absorption of solar radiation, while at night no substantial temperature effect for this layer was detected.  相似文献   
38.
Summary. The Precambrian basement under east-central Kansas was drilled at two circular aeromagnetic positives, one at Osawattamie and one at Big Springs. The core retrieved from these sites is a coarse to medium grained granite which has been dated by U-Pb to be 1350 Ma old. The palaeomagnetism of these azimuthally unoriented cores was studied to see if a technique which uses low-coercivity, low-temperature magnetization components to orient the cores would allow an independent confirmation of the core's mid-Proterozoic age. Orthogonal projection plots of the alternating field (af) and thermal demagnetization data show that the magnetization of these cores is relatively simple, having only two components: a low-temperature, low-coercivity magnetization with steep positive inclinations and a shallow, negative inclination characteristic magnetization for the Osawattamie core or a positive, moderate inclination characteristic magnetization for the Big Springs core. If the declination of the low-temperature, low-coercivity component is aligned parallel to the present field declination, the characteristic directions may be azimuthally oriented. This allows the calculation of palaeomagnetic poles for the Big Springs core (lat. = 4.5°S, long. = 29.9°E) and the Osawattamie core (lat.= 20.2°N, long. = 39.3°E) which are consistent with Irving's apparent polar wander path for Laurentia at about 1300–1400 Ma. Comparison of anhysteretic remanent magnetization (ARM), viscous remanent magnetization (VRM), and isothermal remanent magnetization af demagnetization curves with a natural remanent magnetization (NRM) demagnetization curve suggests that the Osawattamie core probably acquired a piezoremanent magnetization (PRM) parallel to the core axis during drilling.  相似文献   
39.
Hubble Space Telescope observations of distant clusters have suggested a steep increase in the proportion of S0 galaxies between clusters at high redshifts and similar systems at the present day. It has been proposed that this increase results from the transformation of the morphologies of accreted field galaxies from spirals to S0s. We have simulated the evolution of the morphological mix in clusters based on a simple phenomenological model where the clusters accrete a mix of galaxies from the surrounding field, the spiral galaxies are transformed to S0s (through an unspecified process) and are added to the existing cluster population. We find that in order to reproduce the apparently rapid increase in the ratio of S0 galaxies to ellipticals in the clusters, our model requires that: (1) the galaxy accretion rate has to be high (typically, more than half of the present-day cluster population must have been accreted since z ∼0.5) , and (2) most of the accreted spirals, with morphological types as late as Scdm, must have transformed to S0s. Although the latter requirement may be difficult to meet, it is possible that such bulge-weak spirals have already been 'pre-processed' into the bulge-strong galaxies prior to entering the cluster core and are eventually transformed into S0s in the cluster environment. On the basis of the evolution of the general morphological mix in clusters our model suggests that the process responsible for the morphological transformation takes a relatively long time (∼ 1–3 Gyr) after the galaxy has entered the cluster environment.  相似文献   
40.
The colour-magnitude relation provides important information on the formation and evolution of cluster galaxies. By looking into the evolution of the relation as a function of redshift and using the small colour scatter around the relation in Coma, we put constraints on the star formation history and the galaxy merging history of cluster early-type galaxies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号