首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   4篇
  国内免费   59篇
测绘学   7篇
大气科学   4篇
地球物理   52篇
地质学   15篇
综合类   2篇
自然地理   18篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2011年   2篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   30篇
  2005年   1篇
  2004年   16篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
21.
长白山森林生态系统CO_2和水热通量的模拟研究   总被引:7,自引:5,他引:7  
以基于过程的BEPS模型为基础,根据长白山温带阔叶红松林生态系统的生态过程机制,建立了能够描述半小时尺度生态系统通量日变化的模拟模型BEPS.应用该模型对2003年长白山温带阔叶红松林生长季内的CO2和水热通量的模拟结果表明:模型模拟的净生态系统生产力(NEP),潜热通量(LE),显热通量(Hs)与涡度相关系统的实测数据相关性较好,R2值分别达到0.68,0.75,0.71.模拟的长白山温带阔叶红松林生态系统的年累积NEP为300.5gC·m?2,与实测值也非常接近,说明应用该模型可以较好地模拟长白山温带阔叶红松林生态系统的CO2,水和热量交换过程.根据模型对不同气候变化情景下的NEP和蒸散(ET)的分析得出:长白山温带阔叶红松林生态系统的NEP对气候变化比较敏感,在气候变暖条件下该生态系统的碳汇功能可能会减弱.此外,作为基于过程的模型,BEPS对最大羧化速率(Vcmax)和最大气孔导度(gmax)等植物生理生态特征参数的变化反应也比较敏感.  相似文献   
22.
利用涡度相关方法连续观测的结果来估算陆地生态系统碳收支“真值”的工作,越来越引人注目.但是在后期的数据(特别是夜间观测数据)处理过程中,涡度相关方法会出现许多的不确定性问题.目前在世界范围内,用涡度相关方法测定的有效和可靠的夜间CO2通量数据占所有夜间数据的比例很低(通常低于50%).因此,夜间CO2通量数据的处理以及分析其对生态系统碳收支估算的影响是一个非常关键的问题.简要分析和讨论了用涡度相关方法观测的夜间CO2通量数据失真的可能原因,介绍了目前国际上处理夜间CO2通量数据所采用的理论和一般方法,并结合中国通量网(ChinaFLUX)部分台站的观测数据,提出了一种可以根据夜间CO2通量与摩擦风速的相关关系来客观确定摩擦风速阈值的方法——平均值检验法(AVT),并以禹城站和长白山站数据为例,分析讨论了不同夜间数据处理方法对夜间CO2通量产生的影响.最后还在查阅相关文献的基础上,对ChinaFLUX不同台站的数据插补方法和经验方程进行了汇总.  相似文献   
23.
老龄林碳代谢的长期测定对于预测其在未来气候条件下的碳收支状态,减小陆地生态系统碳收支的不确定性十分重要.本研究使用连续两个生长季节(2003和2004年)的涡度相关CO2净交换通量测定和常规气象资料分析平均林龄200年的长白山阔叶红松林生态系统(128°28′E, 42°24′N,中国吉林省)FNEE及其主要成分FGPP与Re的季节和年际变化特征及环境和生物因子对其的影响.通量数据进行了平面坐标旋转,储存项和μ*修正.叶面积指数和温度分别控制着该生态系统FGPP和Re的季节动态和年际差别.水汽压亏缺和气温在更小尺度上调节生长季节的生态系统光合生产,根部水分条件显著影响生态系统冬季维持性的碳代谢过程.2003年1月至2004年12月该生态系统累计截获碳-449 g C·m-2,其中2003和2004年分别为-278和-171 g C·m-2.这两年FGPP和Re分别为-1332,-1294 g C·m-2和1054,1124 g C·m-2.这显示老龄森林可以成为强的碳汇.受环境因子调控,长白山阔叶红松林生态系统的碳代谢表现出显著的季节和年际差异.冬季该生态系统存在弱的光合作用,但总体上向大气释放CO2.春秋季节碳代谢非常活跃,但生态系统吸收和释放几乎相同数量的碳,对全年碳截获贡献并不显著.夏季碳代谢对该生态系统全年碳收支意义重大.90 d的夏季分别贡献全年66.9,68.9%的FGPP和60.4,62.1%的Re.  相似文献   
24.
应用静态箱/气象色谱法对南亚热带3种森林土壤地表CO2排放通量的季节动态及其对环境变化的响应规律进行了2年的连续观测,结果表明:季风常绿阔叶林、针阔叶混交林和马尾松针叶林(S L)CO2年排放总量分别为3942.2,3422.36和2163.02 gCO2.m-2·a-1,并且3种林分具有相同的季节性变化特征,排放高峰均出现在6~8月,这期间的土壤CO2排放量占全年排放总量的35.9%,38.1%和40.2%:不同森林土壤CO2排放过程对环境变化的响应有明显差异,具体体现在针叶林(PF)对温度变化的响应较阔叶林(BF)和混交林(MF)敏感,Q10值较大,而且CO2排放通量的季节变化幅度较大,表明结构单一的森林生态系统抗干扰能力较差;3种森林土壤CO2排放通量与土壤温度(Ts)、土壤含水量(Ms)和空气压力(Pa)均呈显著相关;但多元回归分析表明,空气压力对森林土壤CO2排放通量的影响并不显著;基于经验模型,以土壤5 cm处温度和土壤含水量两个指标可以分别说明阔叶林、混交林和针叶林土壤CO2排放通量变异的75.7%,77.8%和86.5%,该模型可以较好地描述受水分胁迫的土壤或干旱或半干旱土壤CO2的排放过程.  相似文献   
25.
涡度相关技术的发展,为准确获取区域尺度的CO2通量分布格局提供了数据基础.但由于涡度相关技术自身的局限性,需要利用模型模拟作为获取区域CO2通量的重要手段.可是CO2通量和其他微气象变量之间的非线性关系给模拟CO2通量的时空动态变化带来了一定的困难.人工神经网络模型为模拟CO2通量与其他微气象变量的非线性关系提供了一种新的手段.在ChinaFLUX三个不同类型(农田、森林、草地)生态系统中,基于2003年6~8月的半小时涡度相关观测数据,采用BP人工神经网络模型,以能量通量(净辐射、潜热、显热和土壤热通量)以及温度(空气温度、土壤温度)和表层土壤水分作为输入变量,模拟了CO2通量的动态变化.结果表明,人工神经网络模型具有较好的模拟结果,其R2系数在0.75与0.866之间.RMSE在0.008μmol/m2与0.012μmol/m2之间,MAE在1.38μmol/m2与3.60μmol/m2之间,其中农田和森林生态系统的模拟精度略高于草地生态系统.其次,通过比较土壤水分要素是否参与模拟的结果表明,在生长季期间,不存在土壤水分胁迫的情况下,土壤水分的参与并不能显著提供模型模拟的精度.最后,应用连接权重方法进行了神经网络模型不同输入变量的重要性分析,指出神经网络模型不完全是一个黑箱模型,也可以有效地揭示出某些机理性现象.该研究证明,神经网络模型不仅可以有效地模拟CO2通量,也可以揭示出一些机理现象,为通过涡度相关观测与遥感反演技术的集成途径,利用已获取的区域尺度能量通量数据,模拟分析区域尺度的CO2通量分布格局提供了一种有效的方法.  相似文献   
26.
千烟洲中亚热带人工林生态系统CO2通量的季节变异特征   总被引:1,自引:0,他引:1  
刘允芬 《中国科学D辑》2006,36(Z1):91-102
作为中国陆地生态系统通量网络(ChinaFLUX)的组成部分, 利用涡度相关技术对千烟洲中亚热带人工林生态系统CO2 通量进行了长期观测. 本研究集中探讨了千烟洲人工林2003年和2004年净生态系统CO2交换量(NEE)、生态系统呼吸(Re)和总生态系统CO2交换量(GEE)的季节变异特征及其源汇状况与强度. 研究结果表明: (ⅰ) NEE, Re和GEE具有明显的季节变化趋势且密切相关, 冬季和干旱期量级较低而夏季量级较高. (ⅱ) 光照、温度和水分条件是控制千烟洲人工林生态系统NEE, Re和GEE季节动态的主导因素. 光照是控制NEE的主要因素, 而温度和水汽压差共同影响着NEE, 但水汽压差对NEE的影响作用更强. 在适宜光照条件下, 干旱胁迫会造成千烟洲人工林生态系统碳吸收的适宜温度范围明显降低. 温度和降水的协同作用共同控制着Re. (ⅲ) 2003年和2004年千烟洲人工林生态系统NEE, Re和GEE分别为-387.2和-423.8 g C·m-2, 1223.3和1442.0 g C·m-2, -1610.4和-1865.8 g C·m-2, 这表明千烟洲人工林生态系统具有较强碳吸收能力.  相似文献   
27.
涡度相关技术的发展, 为准确获取区域尺度的CO2通量分布格局提供了数据基础. 但由于涡度相关技术自身的局限性, 需要利用模型模拟作为获取区域CO2通量的重要手段. 可是CO2通量和其他微气象变量之间的非线性关系给模拟CO2通量的时空动态变化带来了一定的困难.人工神经网络模型为模拟CO2通量与其他微气象变量的非线性关系提供了一种新的手段. 在ChinaFLUX三个不同类型(农田、森林、草地)生态系统中, 基于2003年6~8月的半小时涡度相关观测数据, 采用BP人工神经网络模型, 以能量通量(净辐射、潜热、显热和土壤热通量)以及温度(空气温度、土壤温度)和表层土壤水分作为输入变量, 模拟了CO2通量的动态变化. 结果表明, 人工神经网络模型具有较好的模拟结果, 其R2系数在0.75与0.866之间.RMSE在0.008 ?mol/m2与0.012 ?mol/m2之间, MAE在1.38 ?mol/m2与3.60 ?mol/m2之间, 其中农田和森林生态系统的模拟精度略高于草地生态系统.其次, 通过比较土壤水分要素是否参与模拟的结果表明, 在生长季期间, 不存在土壤水分胁迫的情况下, 土壤水分的参与并不能显著提供模型模拟的精度. 最后, 应用连接权重方法进行了神经网络模型不同输入变量的重要性分析, 指出神经网络模型不完全是一个黑箱模型, 也可以有效地揭示出某些机理性现象.该研究证明, 神经网络模型不仅可以有效地模拟CO2通量, 也可以揭示出一些机理现象, 为通过涡度相关观测与遥感反演技术的集成途径, 利用已获取的区域尺度能量通量数据, 模拟分析区域尺度的CO2通量分布格局提供了一种有效的方法.  相似文献   
28.
千烟洲中亚热带人工林生态系统受典型亚热带大陆性季风气候影响,其特点是年水热资源丰富,但是夏季水热资源分布明显不同步,经常受到季节性高温干旱胁迫的影响.作为中国陆地生态系统通量观测研究网络(ChinaFLUX)的组成部分,利用涡度相关技术对千烟洲人工林生态系统CO2通量进行了长期连续的观测.本研究基于2003和2004年月尺度的净生态系统生产力(NEP)、生态系统呼吸(Re)和总生态系统生产力(GEP)数据,初步分析和探讨了季节性干旱对生态系统碳吸收的影响.结果表明,2003和2004年该生态系统的碳吸收都呈现双峰曲线式的季节变化模式.生态系统碳平衡的两个组分Re和GEP的耦合关系决定了生态系统的碳吸收特征.生态系统碳吸收的降低程度取决于季节性干旱期间温度升高和降水量减少的耦合程度.Re和GEP都会受到干旱胁迫的影响,但是响应的方式与程度有所不同,是造成森林生态系统源/汇强度变化的根本原因.  相似文献   
29.
利用涡度相关技术,对2003年和2004年青藏高原金露梅灌丛草甸生态系统CO2通量观测表明,金露梅灌丛草甸生态系统CO2通量日变化、年变化明显,且日变化暖季大于冷季.CO2净交换量在年内的4,9月为两个释放高峰期,以7和8月的吸收量最大.2年的CO2吸收分别为231.4和274.8 gCO2·m-2,平均为253.1 gCO2·m2,在区域起着重要的碳汇功能.CO2日交换量与温度、辐射等气象因素具有显著的负相关关系.受年际间气候差异影响,两年CO2释放和吸收高峰出现及维持时间具有微小的差异.比较发现,各年白天CO2通量受光合辐射的控制作用基本相同,温度条件似乎成为影响CO2通量的重要环境因子.在植物生长季温度过高明显时,会降低碳的吸收能力.其原因可能是由于高温度条件下土壤呼吸增强有关引起的.生物量测定表明,2003和2004年的地上和地下生物年净固碳量分别为544.0和559.4 gC·m-2,与CO2年净交换吸收碳量(分别为63.1和74.9 gC·m-2)基本趋势一致.  相似文献   
30.
了解生态系统CO2净交换(NEE)的季节变化规律和主要生物因子及环境因子对这些过程的影响将有助于生态系统碳循环过程机理的理解以及大尺度过程的模拟.本研究利用涡度相关技术对位于西藏高原腹地的、世界海拔最高的草地碳通量观测站的NEE及生物和环境因子进行近3年观测,阐明NEE及其组分的动态变化特征和影响因子.草原化嵩草草甸生态系统碳吸收的最大值出现在8月,最大碳排放出现在11月,在生长季初的6月,受降水和植物返青快慢的影响,会出现生态系统碳吸收或排放的年际差异,7~9月表现为碳吸收,其余月份均为碳排放.在生长季,白天的NEE主要受光合有效辐射变化的控制,同时又与叶面积指数交互作用,共同调节光合速率和光合效率的强度.生态系统呼吸主要受温度的控制,同时也受到土壤含水量的显著影响,呼吸商(Q10)与温度呈负相关,而与土壤含水量呈正相关关系.生长季昼夜温差大并不利于生态系统的碳获取.10℃时标准呼吸速率(R10)与土壤水分、温度、叶面积指数和地上生物量呈正相关关系.降水格局影响了土壤水分动态,土壤含水量会显著影响生态系统呼吸的季节变化.生长季初和末期的脉冲性降水会导致生态系统呼吸的迅速上升,从而导致生态系统碳的流失.西藏高原草原化嵩草草甸生长季短,温度低,致使生态系统的叶面积指数偏低,生态系统碳吸收较少,降水格局引起的土壤湿度动态和脉冲性降水将对生态系统呼吸产生了重要影响,从而会影响到生态系统的碳收支水平.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号