首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   21篇
  国内免费   6篇
地球物理   1篇
地质学   28篇
海洋学   2篇
自然地理   9篇
  2022年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1998年   1篇
  1992年   1篇
  1984年   1篇
排序方式: 共有40条查询结果,搜索用时 109 毫秒
21.
阶梯-深潭系统是山区河流广泛分布的控制性河床结构,泥沙输移过程中大颗粒碰撞阶梯关键石块,使其发生位移,强烈影响阶梯-深潭的稳定性。以单个阶梯-深潭的关键石块为研究对象,重点考虑碰撞对阶梯-深潭的影响,量化来沙中大颗粒碰撞作用并改进稳定性理论模型,利用新模型分析阶梯-深潭的临界条件和破坏机制。来沙颗粒对关键石块的碰撞作用受自身粒径、运动速度和阶梯下游冲刷程度影响且皆为正相关关系。颗粒撞击减小阶梯失稳临界流量,且参与碰撞的石块粒径越大,减小作用越明显。当η> 0.55时(η=D1/D,D1为碰撞石块粒径,D为关键石块粒径),临界流量下降幅度达到50%以上,表明来沙中卵石漂石对阶梯-深潭稳定性发挥主要影响。山区河流发生低频率洪水或滑坡泥石流,向下游河道输运大粒径石块并与阶梯碰撞,显著增大转动合力矩并降低失稳临界流量,使得单个阶梯-深潭更易达到临界条件发生破坏。  相似文献   
22.
长江中游曲流河段河道的近代演化过程研究   总被引:1,自引:0,他引:1       下载免费PDF全文
曲流河是冲积平原河流中的重要河型之一,曲流河的河道演变对冲积平原的建设与演化起着非常重要的作用。地处江汉平原的长江中游藕池口至城陵矶段河道是最典型的曲流河段,其曲流河道的几何形态和变化过程较为复杂,对该段河道演化过程的研究在河流的开发利用及水利工程建设中具有很好的理论指导意义。本研究通过对历史资料和多期卫星遥感影像的解译与分析,表明长江中游藕池口至城陵矶河段的曲流河道演化在受自然和人类活动双重影响的情况下,该河段河道的演化仍然维持曲流河特征。受大洪水的切滩作用及松滋口、太平口和藕池口3个分流口对洞庭湖的分水分沙的影响,该段河道的演化过程较为复杂。自然裁弯取直和人工裁弯取直在一定程度上改变着河道演化的进程,但由裁弯取直及上游水利工程引起的纵坡降增加产生的冲淤变化将会维持河道的稳定,同时在该河段实施的护岸工程也会抑制河流的横向侵蚀,曲流河段河道演化进入自调整和自组织过程。  相似文献   
23.
阶梯-深潭结构是山区河流中典型的高效消能结构,以消耗水能、增加阻力的方式提升沟道稳定性。通过水槽试验模拟沟道冲刷,探究阶梯-深潭结构稳定沟道的机制及效果,为山区河流消能减灾和稳定河床提供科学和技术参考。结果表明:阶梯-深潭结构能有效消耗水流能量、抑制泥沙输移和提升水流阻力,从而有效控制河床下切和边坡破坏;在阶梯-深潭结构的作用下,沟道的Darcy-Weisbach系数约增加为无结构条件下的4倍,时均输沙率降低20%~66%,但随着流量的增大,阶梯-深潭稳定沟道的效果降低;阶梯高度与长度比(0.1)相同时,结构提升沟道稳定性的效果接近。阶梯-深潭结构自身的稳定是其稳定沟道的关键条件,实际应用过程中需防止结构发生逐级破坏。  相似文献   
24.
弯曲河流斜槽裁弯模式与发育过程   总被引:1,自引:0,他引:1       下载免费PDF全文
结合遥感影像、野外调查和形态统计,深入分析斜槽裁弯现象,将其划分为切滩冲刷、串沟冲刷和主流顶冲3种模式。切滩模式发生于洪水期间主流水流动力轴线偏向凸滩后,形成漫流水流冲刷,极可能在边滩形成新的斜槽。切滩裁弯的形态统计表明,弯道曲率半径与平均河宽之比约2.92,分流角约54.8°。串沟模式是前期洪水漫过河湾内侧洪泛平原,漫滩水流冲刷形成若干串沟,后续洪水沿串沟继续冲刷,串沟逐步横向展宽和向下游侵蚀,直至形成新的河槽。主流顶冲模式是水流顶冲河湾内侧河岸,形成湾状缺口,后续洪水持续顶冲湾状缺口,直至上下游水流贯通,形成斜槽裁弯。  相似文献   
25.
山区下切河流地貌演变机理及其与河床结构的关系   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究河床结构在下切性河流地貌演变过程中所起到的作用与影响机制,对中国典型下切性河流区域的地貌特征与河床结构发育进行了调查与统计分析.结果表明,当河流剧烈下切使得河谷边坡超过临界坡度后,易于失稳而发生大规模的崩塌滑坡现象,河流演变从而进入下切拓宽阶段.大量边坡物质进入河道,促进了河床结构的发育,能够维持较高的河道纵坡降...  相似文献   
26.
为研究典型工程措施在泥石流沟治理中的作用及影响,结合野外调查及历史资料,对云南东川城区的深沟泥石流治理进行总结:深沟在一系列坝系群建设和多年植树造林的治理下,发育了一定规模的阶梯一深潭系统,使沟道阻力明显增强(经测河床结构强度5p达0.3以上),消减了泥石流能量,并保护河床不被侵蚀下切,岸坡稳定;而另一方面林草生长能提...  相似文献   
27.
阶梯-深潭系统的水力特性   总被引:2,自引:0,他引:2  
阶梯-深潭系统是山区河流中常见的河床形态,具有稳定河床和消能减灾的作用,其水力特性较为复杂。在温峡水库下游温峡河修建典型的阶梯-深潭系统开展野外实验以研究阶梯-深潭系统的水力特性。利用先进的高频声学多普勒流速仪测量阶梯-深潭系统阶梯上游、阶梯上、深潭中和沿深泓线的水力特性。实验在10 L/s、50 L/s、100 L/s、150 L/s、290 L/s 和 420 L/s 6种流量工况下进行。实验结果表明:阶梯-深潭系统流场尤其是深潭流场具有很强的三维性,阶梯上与深潭中水力特性相差很大。阶梯上沿流向的时均流速远大于横向和垂向的时均流速,三向紊动强度处在一个量级且较小。深潭中的时均流速比阶梯上小,但紊动强度远大于阶梯,紊动强度随流量变大增大。实验工况下,阶梯上的相对紊动强度在0.1左右,深潭中则最大超过8.0。随着水流从阶梯上跌入深潭,机械能大量转化为紊动能消耗。实验流量范围内,雷诺应力随流量小幅增大,深潭中的雷诺应力约为阶梯上的50倍。阶梯-深潭系统消能率在实验工况下为64%~91%。  相似文献   
28.
沙洲是塑造分汊型河道最重要的形态因子,其发育与蚀退由于上游来水来沙变化呈现冲淤交替,从而影响分汊河道输水输沙平衡.通过单个卵石沙洲的淤积和冲刷试验,揭示不同加沙速率、粒径和来流量条件下,沙洲淤积和冲刷规律,并建立简化理论模型分析沙洲淤积速率.结果表明,4组加沙试验中,分流点后出现明显淤积下延至洲头,左汊和右汊成为输沙通道,洲尾中心线两侧的左右汊道有泥沙淤积,洲尾未出现淤积.7组清水冲刷试验中,洲头最先承受冲刷和蚀退,并沿洲体冲刷延伸,洲头冲刷的泥沙沿左右汊水流带到下游,洲尾未出现明显冲刷.卵石沙洲以洲头淤积为主导发育模式,泥沙粒径、洲头坡角和分流角是决定淤积速率的关键因子.  相似文献   
29.
生物栖息地隔离对河流生态影响的试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
以底栖动物为指示物种对天然破碎河段进行野外调查,并开展野外试验对天然河段进行人工隔离和定期采样分析,研究了栖息地隔离对底栖动物组成及河流生态的影响。结果表明,溶解氧含量在各隔离区中变化不一致;隔离区内动物密度、丰度和多样性均降低,隔离程度越高,降低越显著。从动物组成来看,蜉蝣目和双翅目的相对密度在隔离区中显著降低,蜻蜓目和双壳纲则增加。河流栖息地被隔离后,底栖群落经过一段波动周期后才表现出规律性变化趋势。由于水生昆虫在成虫阶段的飞行扩散,隔离区与天然河流之间仍存在较高的动物流通,但隔离区内的动物组成并不完全是天然河段内的子集。结合研究结果和中国河流实际,提出了保护河流生态及生物多样性的建议和对策。  相似文献   
30.
1TheYellowRiverBasinThe Yellow River, with a drainage area of 752,000 km2 and a length of 5,464 km, is the second largest river in China (Figure 1). This river, recognized as the cradle of Chinese civilization, is one of the most complicated and challenging rivers in the world in terms of erosion and sedimentation control, flood defense, and water resource management. The river basin is mostly arid and semi-arid, with a long-term average annual runoff depth of 77 mm and a mean annual input …  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号