首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   3篇
  国内免费   1篇
测绘学   7篇
大气科学   11篇
地球物理   30篇
地质学   38篇
海洋学   5篇
天文学   12篇
综合类   1篇
自然地理   13篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   8篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   10篇
  2012年   10篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   7篇
  2007年   3篇
  2006年   7篇
  2003年   3篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1984年   2篇
  1981年   1篇
  1977年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
91.
Based on the detailed geochemical studies of 184 soil samples from Periyar River Basin (PRB), a tropical monsoon dominated river basin (5398 km2) in the southern western Ghats (WGs) of India, a baseline reference data is established. The soils are mildly acidic with sandy loam and silt loam facies in non-monsoon to sandy loam and sandy clay loam in monsoon. The mean metal concentrations follow the upper continental crust and world shale values. The Geoaccumulation index (Igeo) shows unpolluted to moderately polluted category, except for Cu, Zn, and Ba, while Enrichment Factor (EF) indicates no to minor enrichment for all elements. Contamination factor (Cf) indicates low to considerable contamination for V, Rb, Sr, Ni, and low to very high contamination for Cu, Zn, and Ba. Three significant components are extracted by Principal Component Analysis (PCA), explaining 78.09% and 74.10% of the total variance for monsoon and non-monsoon seasons. Ti, Al, Fe, Ca, Na, K, V, Cr, Ni, Sr, and Ba exhibited common source of origin while anthropogenic origin is identified for Zn and Cu. The study will provide valuable information into the pedological characteristics of WGs river basins.  相似文献   
92.
Wellbore stability problems and stimulation operations call for models helping in understanding the subsurface behaviour and optimizing engineering performance. We present a fast, iteratively coupled model for the flow and mechanical behaviour that employs a time-sequential approach. Updates of pore pressure are calculated in a timestepping approach and propagated analytically to updates of the mechanical response. This way, the spatial and temporal evolution of pressure and mechanical response around a wellbore can be evaluated. The sequential approach facilitates the incorporation of pressure diffusion and of time-dependent plasticity. Also, it facilitates the implementation of permeability evolving with time, due to plasticity or stimulation. The model has been validated by means of a coupled numerical simulator. Its capabilities are demonstrated with a selection of sensitivity runs for typical parameters. Ongoing investigations target geothermal energy operations through the incorporation of thermo-elastic stresses and more advanced plasticity models.  相似文献   
93.
Yogyakarta is one of the large cities in Central Java, located on Java Island, Indonesia. The city, and the Pleret sub-district, where the study has taken place, is prone to earthquake hazards, because it is close to several seismically active zones, such as the Sunda Megathrust and the active fault known as the Opak Fault. Since a devastating earthquake of 2006, the population of the Pleret sub-district has increased significantly. Thus, the housing demand has increased, and so is the pace of low-cost housing that does not meet earthquake-safety requirements, and furthermore are often located on unstable slopes. The local alluvial material covering a jigsaw of unstable blocks and complex slope is conditions that can amplify the negative impacts of earthquakes. Within this context, this study is aiming to assess the multi-hazards and risks of earthquakes and related secondary hazards such as ground liquefaction, and coseismic landslides. To achieve this, we used geographic information systems and remote sensing methods supplemented with outcrop study and existing seismic data to derive shear-strain parameters. The results have revealed the presence of numerous uncharted active faults with movements visible from imagery and outcrops. show that the middle part of the study area has a complex geological structure, indicated by many unchartered faults in the outcrops. Using this newly mapped blocks combined with shear strain data, we reassessed the collapse probability of buildings that reach level >0.75 near the Opak River, in central Pleret sub-district. Classifying the buildings and from population distribution, we could determine that the highest risk was during nighttime as the buildings susceptible to fall are predominantly housing buildings. The secondary hazards follow a slightly different distribution with a concentration of risks in the West.  相似文献   
94.
In recent years, the bivariate frequency analysis of drought duration and severity using independent drought events and copula functions has been under extensive application. Meanwhile, emphasis on the procedure of independent drought data collection leads to the omission of the actual potential of short-term extreme droughts within a long-term independent drought. However, a long-term individual continuous drought as an Unconnected Drought Runs can be considered as a combination of short-term Connected Drought Runs. Thus, an advanced and new procedure of data collection in the bivariate drought characteristics analysis has been developed in this study. The results indicated a high relative advantage of the new proposed procedure in analysing bivariate drought characteristics (i.e., drought duration and severity frequency analysis). This advantage has been reflected in the more appropriate determination of the best copula and significant reduction in the uncertainty of bivariate drought frequency analysis.  相似文献   
95.
96.
The accurate representation of rainfall in models of global climate has been a challenging task for climate modelers owing to its small space and time scales. Quantifying this variability is important for comparing simulations of atmospheric behavior with real time observations. In this regard, this paper compares both the statistical and dynamically forced aspects of precipitation variability simulated by the high-resolution (36?km) Nested Regional Climate Model (NRCM), with satellite observations from the Tropical Rainfall Measuring Mission (TRMM) 3B42 dataset and simulations from the Community Atmosphere Model (CAM) at T85 spatial resolution. Six years of rainfall rate data (2000?C2005) from within the Tropics (30°S?C30°N) have been used in the analysis and results are presented in terms of long-term mean rain rates, amplitude and phase of the annual cycle and seasonal mean maps of precipitation. Our primary focus is on characterizing the annual cycle of rainfall over four land regions of the Tropics namely, the Indian Monsoon, the Amazon, Tropical Africa and the North American monsoon. The lower tropospheric circulation patterns are analyzed in both the observations and the models to identify possible causes for biases in the simulated precipitation. The 6-year mean precipitation simulated by both models show substantial biases throughout the global Tropics with NRCM/CAM systematically underestimating/overestimating rainfall almost everywhere. The seasonal march of rainfall across the equator, following the motion of the sun, is clearly seen in the harmonic vector maps. The timing of peak rainfall (phase) produced by NRCM is in closer agreement with the observations compared to CAM. However like the long-time mean, the magnitude of seasonal mean rainfall is greatly underestimated by NRCM throughout the Tropical land mass. Some of these regional biases can be attributed to erroneous circulation and moisture surpluses/deficits in the lower troposphere in both models. Overall, the results seem to indicate that employing a higher spatial resolution (36?km) does not significantly improve simulation of precipitation. We speculate that a combination of several physics parameterizations and lack of model tuning gives rise to the observed differences between NRCM and the observations.  相似文献   
97.
Aerobic fixed bed bioreactors were used to study and compare biostimulation and bioaugmentation for remediation of soil contaminated with spent motor oil. Bioaugmentation using consortium of bacteria and biostimulation using inorganic fertilizer and potassium dihydrogen orthophosphate were investigated. The bioremediation indicators used were the oil and grease content removals, total heterotrophic bacteria counts and carbon dioxide respiration rates. Results showed that biodegradations were very effective with 50, 66 and 75 % oil and grease content removal efficiencies for control, bioaugmentation and biostimulation respectively after ten weeks. Carbon dioxide respiration followed similar pattern as the oil and grease content removals. Biostimulation option has the highest carbon dioxide generation (6 249 mg/kg) and the control with the least (4 276 mg/kg). Therefore, the biostimulation option can be used to develop a realistic treatment technology for soils contaminated with spent motor oil.  相似文献   
98.
99.
Quartzitic pelites forms a part of Higher Himalayan Crystalline of higher geotectonic zone in Garhwal Himalaya. Quartzitic pelites (locally known as Pandukeshwar Quartzite) in Garhwal Himalaya is sandwiched between high grade metamorphic rocks of Central Crystallines and Badrinath Formation. Fluid inclusion studies are carried out on the detrital, and recrystallized quartz grains of quartzitic pelites to know about the fluid phases present during recrystallization processes at the time of maximum depth of burial. The quartzitic pelite (Pandukeshwar Quartzite) essentially consists of recrystallised quartz with accessory minerals like mica and feldspar. Fluid microthermometry study reveals the presence of three types of fluids: (i) high-salinity brine, (ii) CO2-H2O and (iii) H2O-NaCl. These fluids were trapped during the development of grain and recrystallization processes. The high saline brine inclusions and CO2-H2O fluid with the density of 0.90 to 0.97 gm/cm3 are remnants of provenance area. CO2 density in detrital quartz grains characterise the protolith of the sandstone as granite or metamorphic rock. The H2O-NaCl fluids involved in the recrystallization processes at temperature-pressure of 430-350°C; 4.8 to 0.5 Kbars as constrained by fluid isochores of CO2-H2O and H2O-NaCl inclusions and bulging and subgrain development during recrystallization processes. The re-equilibration of the primary fluid due to elevated internal and confining pressure is evident from features like ‘C’ shaped cavities, stretching of the inclusions, their migration and decrepitation clusters. The observed inclusion morphology revealed that the rocks were exhumed along an isothermal decompression path.  相似文献   
100.
The present study examines the characteristics and climatological features of daily rainfall data over Andaman & Nicobar Islands. Analysis of rainfall data reveals a large monthly deviation over the northern latitudes as compare to southern latitudes of Andaman & Nicobar Islands. Also, it is found that rainfall increases from north to south latitudes in all the seasons except monsoon, where a reverse pattern exists. In trend analysis, a statistically significant decreasing trend (confidence level >95?%) is observed for yearly rainfall and rainy days over the region. Analysis of daily rainfall intensity for each year shows increasing trend for frequency of rather heavy rain (35.6?C64.4?mm) and significant decreasing trend for frequencies of light rain (2.5?C7.5?mm), and very heavy rain (>124.5?mm) over the region. Many times, very heavy rain events are associated with cyclonic disturbances affecting Andaman & Nicobar Islands region. The analysis of cyclonic disturbances over the region reveals a stronger and more significant decreasing trend. So, one of the causes for decreasing trend in very heavy rain over Andaman & Nicobar Islands may be due to significant decreasing frequency of cyclonic disturbances affecting this region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号