首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   954篇
  免费   35篇
  国内免费   23篇
测绘学   37篇
大气科学   47篇
地球物理   189篇
地质学   600篇
海洋学   32篇
天文学   64篇
综合类   6篇
自然地理   37篇
  2023年   4篇
  2022年   34篇
  2021年   37篇
  2020年   33篇
  2019年   24篇
  2018年   77篇
  2017年   85篇
  2016年   63篇
  2015年   42篇
  2014年   64篇
  2013年   79篇
  2012年   41篇
  2011年   51篇
  2010年   37篇
  2009年   40篇
  2008年   33篇
  2007年   21篇
  2006年   24篇
  2005年   24篇
  2004年   19篇
  2003年   17篇
  2002年   17篇
  2001年   8篇
  2000年   11篇
  1999年   12篇
  1998年   4篇
  1997年   4篇
  1996年   7篇
  1995年   6篇
  1994年   7篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   7篇
  1985年   8篇
  1984年   5篇
  1983年   3篇
  1982年   8篇
  1981年   3篇
  1978年   4篇
  1976年   3篇
  1975年   2篇
  1973年   3篇
  1970年   2篇
  1969年   2篇
  1963年   1篇
排序方式: 共有1012条查询结果,搜索用时 15 毫秒
161.
The shallow alluvial aquifers of the delta plains and flood plains of Bangladesh, comprises about 70% of total land area are mostly affected by elevated concentrations of arsenic (As) in groundwater exposing a population of more than 35 million to As toxicity. Geochemical studies of shallow alluvial aquifer in the Meghna flood plain show that the uppermost yellowish grey sediment is low in As (1.03 mg/kg) compared to the lower dark grey to black sediment (5.24 mg/kg) rich in mica and organic matter. Sequential extraction data show that solid phase As bound to poorly crystalline and amorphous metal (Fe, Mn, Al)-oxyhydroxides is dominant in the grey to dark grey sediment and reaches its maximum level (3.05 mg/kg) in the mica rich layers. Amount of As bound to sulphides and organic matter also peaks in the dark grey to black sediment. Vertical distributions of major elements determined by X-ray fluorescence (XRF) show that iron (Fe2O3), aluminum (Al2O3) and manganese (MnO) follow the general trend of distribution of As in the sediments. Concentrations of As, Mn, Fe, HCO3 , SO4 2− and NO3 in groundwater reflect the redox status of the aquifer and are consistent with solid phase geochemistry. Mineralogical analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) fitted with energy dispersive X-ray spectrometer (EDS) revealed dominance of crystalline iron oxides and hydroxides like magnetite, hematite and goethite in the oxidised yellowish grey sediment. Amorphous Fe-oxyhydroxides identified as grain coating in the mica and organic matter rich sediment suggests weathering of biotite is playing a critical role as the source of Fe(III)-oxyhydroxides which in turn act as sink for As. Presence of authigenic pyrite in the dark grey sediment indicates active reduction in the aquifer.  相似文献   
162.
Sediment samples from the coastal zone of the Gulf of Suez contain a variety of organic compounds from anthropogenic and natural sources. A total of 12 surface samples of bottom sediments were collected with an Ekman grab sampler along an off-shore transect south of Ras Abu el-Darag. The samples were extracted with a mixture of dichloromethane and methanol (3:1 v/v) after drying and sieving through 250 μm mesh. The extracts were derivatized and analyzed by gas chromatography–mass spectrometry in order to characterize the chemical composition and sources of the organic components. Marine with minor terrestrial biota were the major natural sources of organic tracers and included n-alkanoic acids, sterols and saccharides (5.7–76.7%). Anthropogenic sources, from petroleum related activities, detergent usage for spill cleaning and littering, are indicated by the presence of n-alkanes with carbon preference index ≤1.0, hopanes, steranes, unresolved complex mixture of branched and cyclic hydrocarbons, alkyl nitriles, alkamides and plasticizers. Their total relative concentrations ranged from 23.3 to 97.3% of the total extracts. Petroleum residues from natural seepage may also be part of these hydrocarbons. The levels of anthropogenic inputs decrease from about 94% in coastal zone sediments to about 20% in sediments from the reef front.  相似文献   
163.
The hydraulic conductivity plays a major role on the excess pore pressure generation during monotonic and cyclic loading of granular soils with fines. This paper aims to determine how much the hydraulic conductivity and pore pressure response of the sand-silt mixtures are affected by the percentage of fines and void ratio of the soil. The results of flexible wall permeameter and undrained monotonic triaxial tests performed on samples reconstituted from Chlef River sand with 0, 10, 20, 30, 40, and 50% nonplastic silt at an effective confining stress of 100 kPa and two relative densities (Dr = 20, and 91%) are presented and discussed. It was found that the pore pressure increases linearly with the increase of the fines content and logarithmically with the increase of the intergranular void ratio. The results obtained from this study reveal that the saturated hydraulic conductivity (k) of the sand mixed with 50% low plastic fines can be, on average, four orders of magnitude smaller than that of the clean sand. The results show also that the hydraulic conductivity decreases hyperbolically with the increase of the fines content and the intergranular void ratio.  相似文献   
164.
In order to study pore water response and static liquefaction characteristics of silty sand, which has previously experienced liquefaction, two series of monotonic triaxial tests were run on medium dense sand specimens (RD = 50%) at confining pressure of 100 kPa. In the first test series, the influence of the soil saturation under undrained static loading has been studied. It summarizes results of monotonic tests performed on Chlef sand at various values of the Skempton's pore pressure coefficient. Analysis of experimental results gives valuable insights on the effect of soil saturation on sand response to undrained monotonic paths. In the second series of tests, the overconsolidation influence on the resistance to the sands liquefaction has been realized on samples at various values of overconsolidation ratios (OCR). It was found that the increase of overconsolidation ratio (OCR) increases the resistance of sands to liquefaction.  相似文献   
165.
166.
167.
168.
Over the past few decades, groundwater has become an essential commodity owing to increased demand as a result of growing population, industrialization, urbanization and so on. The water supply situation is expected to become more severe in the future because of continued unsustainable water use and projected change in hydrometeorological parameters due to climate change. This study is based on the integrated approach of remote sensing, geographical information system and multicriteria decision‐making techniques to determine the most important contributing factors that affect the groundwater resources and to delineate the groundwater potential zones. Ten thematic layers, namely, geomorphology, geology, soil, topographic elevation (digital elevation model), land use/land cover, drainage density, lineament density, proximity of surface water bodies, surface temperature and post‐monsoon groundwater depth, were considered for the present study. These thematic layers were selected for groundwater prospecting based on the literature; discussion with the experts of the Central Ground Water Board, Government of India; field observations; geophysical investigation; and multivariate techniques. The thematic layers and their features were assigned suitable weights on Saaty's scale according to their relative significance for groundwater occurrence. The assigned weights of the layers and their features were normalized by using the analytic hierarchy process and eigenvector method. Finally, the selected thematic maps were integrated using a weighted linear combination method to create the final groundwater potential zone map. The final output map shows different zones of groundwater potential, namely, very good (16%), good (35%), moderate (28%) low (17%) and very low (2.1%). The groundwater potential zone map was finally validated using the discharge and groundwater depth data from 28 and 98 pumping wells, respectively, which showed good correlation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
169.
Shallow aquifer vulnerability has been assessed using GIS-based DRASTIC model by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination in a granitic terrain. It provides a relative indication of aquifer vulnerability to the contamination. Further, it has been cross-verified with hydrochemical signatures such as total dissolved solids (TDS), \(\hbox {Cl}^{-},\, \hbox {HCO}_{3}^{-},\, \hbox {SO}_{4}^{2-}\) and \(\hbox {Cl}^{-}/\hbox {HCO}_{3}^{-}\) molar ratios. The results show four zones of aquifer vulnerability (i.e., negligible, low, moderate and high) based on the variation of DRASTIC Vulnerability Index (DVI) between 39 and 132. About 57% area in the central part is found moderately and highly contaminated due to the 80 functional tannery disposals and is more prone to groundwater aquifer vulnerability. The high range values of TDS (2304–39,100 mg/l); \(\hbox {Na}^{+}\)(239– 6,046 mg/l) and \(\hbox {Cl}^{-}\) (532–13,652 mg/l) are well correlated with the observed high vulnerable zones. The values of \(\hbox {Cl}^{-}/\hbox {HCO}_{3}^{-}\) (molar ratios: 1.4–106.8) in the high vulnerable zone obviously indicate deterioration of the aquifer due to contamination. Further cumulative probability distributions of these parameters indicate several threshold values which are able to demarcate the diverse vulnerability zones in granitic terrain.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号