首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   10篇
测绘学   4篇
大气科学   9篇
地球物理   31篇
地质学   46篇
海洋学   6篇
天文学   2篇
  2022年   4篇
  2021年   5篇
  2020年   3篇
  2019年   1篇
  2018年   13篇
  2017年   7篇
  2016年   10篇
  2015年   7篇
  2014年   17篇
  2013年   7篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有98条查询结果,搜索用时 250 毫秒
81.
This study attempts to evaluate the capability of the advanced spaceborne thermal emission and reflection radiometer (ASTER) and the advantages of ground knowledge for generating maps portraying hydrothermally altered areas in relation to porphyry copper deposits. The northern part of the Rabor area in the Urumieh–Dokhtar magmatic belt, containing some copper mineralization occurrences, was investigated as a case study. Several image processing techniques, namely minimum noise fraction, pixel purity index, and n-dimensional visualization, contributed to the extraction of pure pixels as endmembers. The spectra of some rock samples collected around the well-known altered zones of the study area were resampled to ASTER bands and used to identify the image-extracted endmembers. Spectral analysis of the endmembers and ground sample spectra led to the identification of three types of hydrothermal alterations: (1) phyllic, (2) propylitic, and (3) argillic. The identified endmembers were used as the specified targets for mapping hydrothermal alteration zones over the study area by using a mixture tuned match filtering algorithm. Results demonstrate that high abundances within pixels correspond closely to the altered areas. Field observations, thin section, and X-ray diffraction of collected samples confirmed the accuracy of the alteration maps prepared by the application of the proposed methods. The final classified hydrothermal alteration maps showed the overall accuracy and kappa coefficient values of 85.41 and 0.72%, respectively. These results ascertain that ASTER data that use suitable image processing techniques appear consistent in mapping out the distribution of hydrothermally altered areas. In addition, ground knowledge data can act as a valuable information source to increase the image classification accuracy and reliability.  相似文献   
82.
A hybrid modeling approach is proposed for near real-time three-dimensional (3D) mapping of surficial aquifers. First, airborne frequency-domain electromagnetic (FDEM) measurements are numerically inverted to obtain subsurface resistivities. Second, a machine-learning (ML) algorithm is trained using the FDEM measurements and inverted resistivity profiles, and borehole geophysical and hydrogeologic data. Third, the trained ML algorithm is used together with independent FDEM measurements to map the spatial distribution of the aquifer system. Efficacy of the hybrid approach is demonstrated for mapping a heterogeneous surficial aquifer and confining unit in northwestern Nebraska, USA. For this case, independent performance testing reveals that aquifer mapping is unbiased with a strong correlation (0.94) among numerically inverted and ML-estimated binary (clay-silt or sand-gravel) layer resistivities (5–20 ohm-m or 21–5,000 ohm-m), and an intermediate correlation (0.74) for heterogeneous (clay, silt, sand, gravel) layer resistivities (5–5,000 ohm-m). Reduced correlation for the heterogeneous model is attributed to over-estimating the under-sampled high-resistivity gravels (about 0.5 % of the training data), and when removed the correlation increases (0.87). Independent analysis of the numerically inverted and ML-estimated resistivities finds that the hybrid procedure preserves both univariate and spatial statistics for each layer. Following training, the algorithms can map 3D surficial aquifers as fast as leveled FDEM measurements are presented to the ML network.  相似文献   
83.
84.
Ocean Dynamics - The climatic change has led to the sea-level rise (SLR), which is expected to continue based on the current industrial and human activities. Previous studies indicated that most of...  相似文献   
85.
Natural Hazards - This research had been conducted in Sampean Baru Watershed, Bondowoso-Situbondo Regency, Indonesia. The National Disaster Management Agency (BNPB) categorizes this watershed as an...  相似文献   
86.
The spatial nature of crash data highlights the importance of employing Geographical Information Systems (GIS) in different fields of safety research. Recently, numerous studies have been carried out in safety analysis to investigate the relationships between crashes and related factors. Trip generation as a function of land use, socio‐economic, and demographic characteristics might be appropriate variables along with network characteristics and traffic volume to develop safety models. Generalized Linear Models (GLMs) describe the relationships between crashes and the explanatory variables by estimating the global and fixed coefficients. Since crash occurrences are almost certainly influenced by many spatial factors; the main objective of this study is to employ Geographically Weighted Poisson Regression (GWPR) on 253 traffic analysis zones (TAZs) in Mashhad, Iran, using traffic volume, network characteristics and trip generation variables to investigate the aspects of relationships which do not emerge when using conventional global specifications. GWPR showed an improvement in model performance as indicated by goodness‐of‐fit criteria. The results also indicated the non‐stationary state in the relationships between the number of crashes and all independent variables.  相似文献   
87.
88.
This paper presents a wavelet-based multifractal approach to characterize the statistical properties of temporal distribution of the 1982–2012 seismic activity in Mammoth Mountain volcano. The fractal analysis of time-occurrence series of seismicity has been carried out in relation to seismic swarm in association with magmatic intrusion happening beneath the volcano on 4 May 1989. We used the wavelet transform modulus maxima based multifractal formalism to get the multifractal characteristics of seismicity before, during, and after the unrest. The results revealed that the earthquake sequences across the study area show time-scaling features. It is clearly perceived that the multifractal characteristics are not constant in different periods and there are differences among the seismicity sequences. The attributes of singularity spectrum have been utilized to determine the complexity of seismicity for each period. Findings show that the temporal distribution of earthquakes for swarm period was simpler with respect to pre- and post-swarm periods.  相似文献   
89.
Based on continuous GPS data, we analyze coseismic deformation due to the 2012 Indian Ocean earthquake. We use the available coseismic slip models of the 2012 earthquake, derived from geodetic and/or seismic waveform inversion, to calculate the coseismic displacements in the Andaman-Nicobar, Sumatra and Java. In our analysis, we employ a spherical, layered model of the Earth and we find that Java Island experienced coseismic displacements up to 8 mm, as also observed by our GPS network. Compared to coseismic offsets measured from GPS data, a coseismic slip model derived from multiple observations produced better results than a model based on a single type of observation.  相似文献   
90.
Atmospheric aerosol optical depth (AOD) plays an important role in radiation modeling and partly determines the accuracy of estimated downward surface shortwave radiation (DSSR). In this study, Iqbal’s model C was used to estimate DSSR under cloud-free conditions over the Koohin and Chitgar sites in Tehran, Iran; the estimated DSSR was based on (1) our proposed hybrid modeling scheme where the AOD is retrieved using the Simplified Aerosol Retrieval Algorithm (SARA), ground-based measurements at the AERONET site in Zanjan and (2) the AOD from the Terra MODerate-resolution Imaging Spectroradiometer (MODIS) sensor. Several other Terra MODIS land and atmospheric products were also used as input data, including geolocation properties, water vapor, total ozone, surface reflectance, and top-of-atmosphere (TOA) radiance. SARA-based DSSR and MODIS-based DSSR were evaluated with ground-based DSSR measurements at the Koohin and Chitgar sites in 2011 and 2013, respectively; the averaged statistics for SARA-based DSSR [R 2 ≈ 0.95, RMSE ≈ 22 W/m2 (2.5% mean value), and bias ≈ 3 W/m2] were stronger than those for MODIS-based DSSR [R 2 ≈ 0.79, RMSE ≈ 51 W/m2 (5.8% mean value), and bias ≈ 34 W/m2]. These results show that the proposed hybrid scheme can be used at regional to global scales under the assumption of future access to spatially distributed AERONET sites. Additionally, the robustness of this modeling scheme was exemplified by estimating the aerosol radiative forcing (ARF) during a dust storm in Southwest Asia. The results were comparable to those of previous studies and showed the strength of our modeling scheme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号