首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   20篇
测绘学   3篇
大气科学   18篇
地球物理   106篇
地质学   87篇
海洋学   22篇
天文学   16篇
综合类   1篇
自然地理   12篇
  2022年   3篇
  2021年   6篇
  2020年   8篇
  2019年   6篇
  2018年   19篇
  2017年   10篇
  2016年   20篇
  2015年   11篇
  2014年   17篇
  2013年   14篇
  2012年   7篇
  2011年   14篇
  2010年   15篇
  2009年   10篇
  2008年   18篇
  2007年   11篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2000年   4篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1974年   4篇
  1971年   1篇
  1962年   1篇
  1952年   1篇
  1947年   2篇
  1946年   1篇
  1944年   1篇
  1942年   1篇
  1941年   1篇
排序方式: 共有265条查询结果,搜索用时 171 毫秒
261.
This study conducts coupled simulation of strong motion and tsunami using stochastically generated earthquake source models. It is focused upon the 2011 Tohoku, Japan earthquake. The ground motion time-histories are simulated using the multiple-event stochastic finite-fault method, which takes into account multiple local rupture processes in strong motion generation areas. For tsunami simulation, multiple realizations of wave profiles are generated by evaluating nonlinear shallow water equations with run-up. Key objectives of this research are: (i) to investigate the sensitivity of strong motion and tsunami hazard parameters to asperities and strong motion generation areas, and (ii) to quantify the spatial variability and dependency of strong motion and tsunami predictions due to common earthquake sources. The investigations provide valuable insights in understanding the temporal and spatial impact of cascading earthquake hazards. Importantly, the study also develops an integrated strong motion and tsunami simulator, which is capable of capturing earthquake source uncertainty. Such an advanced numerical tool is necessary for assessing the performance of buildings and infrastructure that are subjected to cascading earthquake–tsunami hazards.  相似文献   
262.
Geostatistical seismic inversion methods are routinely used in reservoir characterisation studies because of their potential to infer the spatial distribution of the petro‐elastic properties of interest (e.g., density, elastic, and acoustic impedance) along with the associated spatial uncertainty. Within the geostatistical seismic inversion framework, the retrieved inverse elastic models are conditioned by a global probability distribution function and a global spatial continuity model as estimated from the available well‐log data for the entire inversion grid. However, the spatial distribution of the real subsurface elastic properties is complex, heterogeneous, and, in many cases, non‐stationary since they directly depend on the subsurface geology, i.e., the spatial distribution of the facies of interest. In these complex geological settings, the application of a single distribution function and a spatial continuity model is not enough to properly model the natural variability of the elastic properties of interest. In this study, we propose a three‐dimensional geostatistical inversion technique that is able to incorporate the reservoir's heterogeneities. This method uses a traditional geostatistical seismic inversion conditioned by local multi‐distribution functions and spatial continuity models under non‐stationary conditions. The procedure of the proposed methodology is based on a zonation criterion along the vertical direction of the reservoir grid. Each zone can be defined by conventional seismic interpretation, with the identification of the main seismic units and significant variations of seismic amplitudes. The proposed method was applied to a highly non‐stationary synthetic seismic dataset with different levels of noise. The results of this work clearly show the advantages of the proposed method against conventional geostatistical seismic inversion procedures. It is important to highlight the impact of this technique in terms of higher convergence between real and inverted reflection seismic data and the more realistic approximation towards the real subsurface geology comparing with traditional techniques.  相似文献   
263.
Water quality in streams is determined by several factors, including geology, topography, climate, and anthropogenic changes. This study aimed to assess the effects of watershed physical, morphology, and precipitation seasonality on the water quality of two streams that supply drinking water to rural settlements and urban areas in the Cerrado-Amazonia transition region. We monitored 16 physico-chemical attributes of water at six different sample locations over three years (2013–2016). Our results indicate that eight of these physico-chemical attributes did not meet the standards for safe drinking water established by Brazilian legislation. Precipitation seasonality, degradation of riparian zones, stream length, and watershed slope were the most important predictors of impaired water quality. Our results highlight the importance of restoring and conserving riparian forests in order to maintain drinking water quality.  相似文献   
264.
This paper presents a multilayered ecosystem modelling approach that combines the simulation of the biogeochemistry of a coastal ecosystem with the simulation of the main forcing functions, such as catchment loading and aquaculture activities. This approach was developed as a tool for sustainable management of coastal ecosystems. A key feature is to simulate management scenarios that account for changes in multiple uses and enable assessment of cumulative impacts of coastal activities. The model was applied to a coastal zone in China with large aquaculture production and multiple catchment uses, and where management efforts to improve water quality are under way. Development scenarios designed in conjunction with local managers and aquaculture producers include the reduction of fish cages and treatment of wastewater. Despite the reduction in nutrient loading simulated in three different scenarios, inorganic nutrient concentrations in the bay were predicted to exceed the thresholds for poor quality defined by Chinese seawater quality legislation. For all scenarios there is still a Moderate High to High nutrient loading from the catchment, so further reductions might be enacted, together with additional decreases in fish cage culture. The model predicts that overall, shellfish production decreases by 10%–28% using any of these development scenarios, principally because shellfish growth is being sustained by the substances to be reduced for improvement of water quality. The model outcomes indicate that this may be counteracted by zoning of shellfish aquaculture at the ecosystem level in order to optimize trade-offs between productivity and environmental effects. The present case study exemplifies the value of multilayered ecosystem modelling as a tool for Integrated Coastal Zone Management and for the adoption of ecosystem approaches for marine resource management. This modelling approach can be applied worldwide, and may be particularly useful for the application of coastal management regulation, for instance in the implementation of the European Marine Strategy Framework Directive.  相似文献   
265.
The thermal and exhumation history of late Hercynian granitoids from Calabria (Sila and Serre massifs) has been studied using thermobarometry and radiometric age determinations. The uplift and erosion which followed contractional tectonics of Tertiary age exposed in Calabria a nearly complete section of the Hercynian crust. Field data, constrained by igneous thermobarometrical data, have enabled us to draw simplified crustal profiles. In both the Sila and Serre massifs, granitoids make up the intermediate portions of the crustal sections and are stacked as tabular intrusions for up to 13 km cumulative thickness. Shallow granitoids are characterized by a weak fabric, mostly developed in the magmatic stage, whereas deep‐seated granitoids display a strong fabric developed in the magmatic state and, with decreasing temperatures, in the subsolidus state. The intrusive bodies were emplaced at 300–290 Ma, at a time when the Calabrian crust was undergoing extensional tectonics and crustal thinning. The subsequent post‐Hercynian evolution is recorded by Rb‐Sr dates of micas and fission track ages of zircon and apatite obtained from granitoids emplaced at different depths. A decrease in Rb‐Sr and fission track ages is observed as depth of emplacement increases. Data on the post‐Hercynian geological evolution of Calabria were used to model in three stages the cooling and exhumation history of deep‐seated and shallow granitoids. The first stage, in Permian to Triassic times, was characterized by slow erosion. It was followed by a second stage of extensional tectonics in Jurassic times. The third stage was exhumation during the Apenninic Orogeny. The model has generated two P–T–t arrays, one for deep‐seated and the other for shallow granitoids of the Serre massif. The T–t paths suggest that the dates of micas, zircon and apatite are cooling ages. They also show that deep‐seated granitoids remained at temperatures above the brittle–plastic transition for a long time, whereas shallow granitoids cooled rapidly. Distinct P–T–t paths explain why deep‐seated and shallow granitoids display different fabric and microstructural features. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号