首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   4篇
  国内免费   1篇
测绘学   2篇
大气科学   14篇
地球物理   44篇
地质学   71篇
海洋学   3篇
天文学   13篇
自然地理   8篇
  2021年   3篇
  2019年   6篇
  2018年   4篇
  2016年   7篇
  2015年   8篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   7篇
  2005年   6篇
  2004年   2篇
  2002年   6篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   4篇
  1974年   3篇
  1973年   1篇
  1971年   1篇
  1969年   2篇
  1968年   1篇
  1967年   3篇
  1965年   2篇
  1964年   3篇
  1963年   4篇
  1962年   1篇
  1961年   1篇
  1960年   4篇
  1959年   1篇
  1958年   2篇
  1954年   1篇
  1928年   1篇
排序方式: 共有155条查询结果,搜索用时 9 毫秒
151.
Carbonate environments inhabit the realm of the surface, intermediate and deep currents of the ocean circulation where they produce and continuously deliver material which is potentially deposited into contourite drifts. In the tropical realm, fine‐grained particles produced in shallow water and transported off‐bank by tidal, wind‐driven, and cascading density currents are a major source for transport and deposition by currents. Sediment production is especially high during interglacial times when sea level is high and is greatly reduced during glacial times of sea‐level lowstands. Reduced sedimentation on carbonate contourite drifts leads to early marine cementation and hardened surfaces, which are often reworked when current strength increases. As a result, reworked lithoclasts are a common component in carbonate drifts. In areas of temperate and cool water carbonates, currents are able to flow across carbonate producing areas and incorporate sediment directly to the current. The entrained skeletal carbonate particles have variable bulk density and shapes that lower the prediction of transport rates in energy‐based transport models, as well as prediction of current velocity based on grain size. All types of contourite drifts known in clastic environments are found in carbonate environments, but three additional drift types occur in carbonates because of local sources and current flow diversion in the complicated topography inherent to carbonate systems. The periplatform drift is a carbonate‐specific plastered drift that is nearly exclusively made of periplatform ooze. Its geometry is built by the interaction of along‐slope currents and downslope currents, which deliver sediment from the adjacent shallow‐water carbonate realm to the contour current via a line source. Because the periplatform drift is plastered on the slopes of the platforms it is also subject to mass gravity flow and large slope failures. At platform edges, a special type of patch drift develops. These hemiconal platform‐edge drifts also contain exclusively periplatform ooze but their geometry is controlled by the current around the corner of the platform. At the north‐western end of Little and Great Bahama Bank are platform‐edge drifts that are over 100 km long and up to 600 m thick. A special type of channel‐related drift forms when passages between carbonate buildups or channels within a platform open into deeper water. A current flowing in these channels will entrain material shed from the sediment producing areas. At the channel mouth, the sediment‐charged current deposits its sediment load into the deeper basin. With continuous flow, a submarine delta drift is built that progrades into the deep water. The strongly focused current forming the delta drift, is able to rework coarse skeletal grains and clasts, making this type of carbonate drift the coarsest drift type.  相似文献   
152.
153.
154.
155.
The relationship between decadal variations in the North Atlantic meridional overturning circulation (MOC) and North Atlantic/Western European windstorm activity during the extended winter season is studied. According to an ensemble of three 240-year long simulations performed with the ECHAM5-MPIOM model, periods of high decadal windstorm activity frequently occur in the years following a phase of weak MOC (i.e. when the MOC starts to recover). These periods are characterised by a distinctive pattern in the mixed layer ocean heat content (OHC). A positive anomaly is located in the region 45°N?52°N/35°W?16°W (west of France). Negative anomalies are located to the North and South. The signal can be detected both in the heat content of the oceanic mixed layer and in the sea surface temperatures. Its structure is consistent with anomalously enhanced baroclinic instability in the region with the strong negative OHC gradient (30°W?10°W/45°N?60°N), which eventually produces a higher probability of windstorms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号