首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   21篇
  国内免费   9篇
测绘学   9篇
大气科学   18篇
地球物理   93篇
地质学   107篇
海洋学   14篇
天文学   14篇
综合类   3篇
自然地理   12篇
  2023年   2篇
  2022年   6篇
  2021年   12篇
  2020年   16篇
  2019年   18篇
  2018年   22篇
  2017年   19篇
  2016年   32篇
  2015年   16篇
  2014年   22篇
  2013年   16篇
  2012年   13篇
  2011年   17篇
  2010年   10篇
  2009年   6篇
  2008年   7篇
  2007年   5篇
  2006年   8篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有270条查询结果,搜索用时 15 毫秒
251.
This paper presents a semi-automatic method using an unsupervised neural network to analyze geomorphometric features as landform elements. The Shuttle Radar Topography Mission (SRTM) provided detailed digital elevation models (DEMs) for all land masses between 60°N and 57°S. Exploiting these data for recognition and extraction of geomorphometric features is a challenging task. Results obtained with two methods, Wood's morphometric parameterization and the Self Organizing Map (SOM), are presented in this paper.Four morphometric parameters (slope, minimum curvature, maximum curvature and cross-sectional curvature) were derived by fitting a bivariate quadratic surface with a window size of 5 by 5 to the SRTM DEM. These parameters were then used as input to the two methods. Wood's morphometric parameterization provides point-based features (peak, pit and pass), line-based features (channel and ridge) and area-based features (planar). Since point-based features are defined as having a very small slope when their neighbors are considered, two tolerance values (slope tolerance and curvature tolerance) are introduced. Selection of suitable values for the tolerance parameters is crucial for obtaining useful results.The SOM as an unsupervised neural network algorithm is employed for the classification of the same morphometric parameters into ten classes characterized by morphometric position (crest, channel, ridge and plan area) subdivided by slope ranges. These terrain features are generic landform element and can be used to improve mapping and modeling of soils, vegetation, and land use, as well as ecological, hydrological and geomorphological features. These landform elements are the smallest homogeneous divisions of the land surface at the given resolution. The result showed that the SOM is an efficient scalable tool for analyzing geomorphometric features as meaningful landform elements, and uses the full potential of morphometric characteristics.  相似文献   
252.
Internal shocks propagating through an ambient radiation field are subject to a radiative drag that, under certain conditions, can significantly affect their dynamics, and consequently the evolution of the beaming cone of emission produced behind the shocks. The resultant change of the Doppler factor combined with opacity effects leads to a strong dependence on the viewing angle of the variability pattern produced by such systems; specifically, the shape of the light curves and the characteristics of correlated emission. One implication is that objects oriented at relatively large viewing angles to the observer should exhibit a higher level of activity at high synchrotron frequencies (above the self-absorption frequency), and also at gamma-ray energies below the threshold energy of pair production, than at lower (radio/millimetre) frequencies.  相似文献   
253.
254.
A fundamental tool in seismic risk assessment of transportation systems is the fragility curve, which describes the probability that a structure will reach or exceed a certain damage state for a given ground motion intensity. Fragility curves are usually represented by two‐parameter (median and log‐standard deviation) cumulative lognormal distributions. In this paper, a numerical approach, in the spirit of the IDA, is applied for the development of fragility curves for highways and railways on embankments and in cuts due to seismic shaking. The response of the geo‐construction to increasing levels of seismic intensity is evaluated using a 2D nonlinear finite element model, with an elasto‐plastic criterion to simulate the soil behavior. A calibration procedure is followed in order to account for the dependency of both the stiffness and the damping to the soil strain level. The effect of soil conditions and ground motion characteristics on the response of the embankment and cut is taken into account considering different typical soil profiles and seismic input motions. This study will provide input for the assessment of the vulnerability of the road/railway network regarding the performance of the embankments and cuts; therefore, the level of damage is described in terms of the permanent ground displacement in these structures. The fragility curves are estimated based on the evolution of damage with increasing earthquake intensity, which is described by PGA. The proposed approach allows the evaluation of new fragility curves considering the distinctive features of the element's geometry, the input motion, and the soil properties as well as the associated uncertainties. A relationship between the computed permanent ground displacement on the surface of the embankment and the PGA in the free field is also suggested based on the results of the numerical analyses. Finally, the proposed fragility curves are compared with existing empirical data and the limitations of their applicability are outlined. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
255.
Slip along faults generates wear products such as gouge layers and cataclasite zones that range in thickness from sub-millimeter to tens of meters. The properties of these zones apparently control fault strength and slip stability. Here we present a new model of wear in a three-body configuration that utilizes the damage rheology approach and considers the process as a microfracturing or damage front propagating from the gouge zone into the solid rock. The derivations for steady-state conditions lead to a scaling relation for the damage front velocity considered as the wear-rate. The model predicts that the wear-rate is a function of the shear-stress and may vanish when the shear-stress drops below the microfracturing strength of the fault host rock. The simulated results successfully fit the measured friction and wear during shear experiments along faults made of carbonate and tonalite. The model is also valid for relatively large confining pressures, small damage-induced change of the bulk modulus and significant degradation of the shear modulus, which are assumed for seismogenic zones of earthquake faults. The presented formulation indicates that wear dynamics in brittle materials in general and in natural faults in particular can be understood by the concept of a “propagating damage front” and the evolution of a third-body layer.  相似文献   
256.
This paper presents a wavelet-based multifractal approach to characterize the statistical properties of temporal distribution of the 1982–2012 seismic activity in Mammoth Mountain volcano. The fractal analysis of time-occurrence series of seismicity has been carried out in relation to seismic swarm in association with magmatic intrusion happening beneath the volcano on 4 May 1989. We used the wavelet transform modulus maxima based multifractal formalism to get the multifractal characteristics of seismicity before, during, and after the unrest. The results revealed that the earthquake sequences across the study area show time-scaling features. It is clearly perceived that the multifractal characteristics are not constant in different periods and there are differences among the seismicity sequences. The attributes of singularity spectrum have been utilized to determine the complexity of seismicity for each period. Findings show that the temporal distribution of earthquakes for swarm period was simpler with respect to pre- and post-swarm periods.  相似文献   
257.
In this study, effects of panel zone yielding on the seismic performance of welded-flange-plate (WFP) connections are investigated. In this work, four full-scale beam-to-column connections were used to run the experiments under cyclic loading. The obtained results can potentially lead to a better understanding of the influence of the panel zone inelastic shear deformation on the cyclic behavior of WFP connections for external joints in steel moment resisting frames (SMRFs). The main parameter in the testing program was the panel zone strength having a wide variation to gain the different levels of panel zone yielding. Results showed that all specimens had a high connection rotation capacity to satisfy the requirements of special moment frame connections. However, specimens with different panel zone strengths could provide the different amount of energy dissipation. Severe beam buckling was followed by tearing along the k-line region of the beam in the plastic hinge location, as well as tearing of the beam at the nose of the bottom flange plates which were both observed as a predominant failure mode in the specimens with a stronger panel zone. However, specimens with weak panel zone could develop a significant plastic rotation without causing any major problem to the beam-to-column connection groove welds. Based on mentioned observations and considering the effect of panel zone yielding because of different panel zone strengths on the hysteresis behavior of specimens, failure modes, plastic rotation capacity, and energy dissipation, some modifications were proposed for design requirements of the panel zone strength.  相似文献   
258.
Extreme rainfall events are of particular importance due to their severe impacts on the economy, the environment and the society. Characterization and quantification of extremes and their spatial dependence structure may lead to a better understanding of extreme events. An important concept in statistical modeling is the tail dependence coefficient (TDC) that describes the degree of association between concurrent rainfall extremes at different locations. Accurate knowledge of the spatial characteristics of the TDC can help improve on the existing models of the occurrence probability of extreme storms. In this study, efficient estimation of the TDC in rainfall is investigated using a dense network of rain gauges located in south Louisiana, USA. The inter-gauge distances in this network range from about 1 km to 9 km. Four different nonparametric TDC estimators are implemented on samples of the rain gauge data and their advantages and disadvantages are discussed. Three averaging time-scales are considered: 1 h, 2 h and 3 h. The results indicate that a significant tail dependency may exist that cannot be ignored for realistic modeling of multivariate rainfall fields. Presence of a strong dependence among extremes contradicts with the assumption of joint normality, commonly used in hydrologic applications.  相似文献   
259.
Quantification of rainfall and its spatial and temporal variability is extremely important for reliable hydrological and meteorological modeling. While rain gauge measurements do not provide reasonable areal representation of rainfall, remotely sensed precipitation estimates offer much higher spatial resolution. However, uncertainties associated with remotely sensed rainfall estimates are not well quantified. This issue is important considering the fact that uncertainties in input rainfall are the main sources of error in hydrologic processes. Using an ensemble of rainfall estimates that resembles multiple realizations of possible true rainfall, one can assess uncertainties associated with remotely sensed rainfall data. In this paper, ensembles are generated by imposing rainfall error fields over remotely sensed rainfall estimates. A non-Gaussian copula-based model is introduced for simulation of rainfall error fields. The v-transformed copula is employed to describe the dependence structure of rainfall error estimates without the influence of the marginal distribution. Simulations using this model can be performed unconditionally or conditioned on ground reference measurements such that rain gauge data are honored at their locations. The presented model is implemented for simulation of rainfall ensembles across the Little Washita watershed, Oklahoma. The results indicate that the model generates rainfall fields with similar spatio-temporal characteristics and stochastic properties to those of observed rainfall data.  相似文献   
260.
Liquefaction of loose and saturated soils during earthquakes and strong ground motions has been a major cause of damage to buildings and earth embankments as well as other civil engineering structures. In order to evaluate the liquefaction potential and steady state characteristics of gravely sand of south west Tehran,a subsoil exploration program conducted dividing the region into 10 zones. In each zone of 500 m × 500 m a borehole of 20 m deep was drilled. SPT was performed at one meter intervals in each borehole and a total of 200 samples were recovered. Soils of similar grain size distribution have been considered to have similar steady state characteristics,therefore consolidated undrained triaxial tests were performed on these soils of similar grain size distribution to evaluate the steady state strength. The steady state line for each soil type was derived. Comparing the steady state strengths with the shear stress due to an earthquake with a PGA of 0.35 g,the potential of sand liquefaction and .ow failure in soil layers has been evaluated and the settlement of soil due to the liquefaction phenomena is calculated. Finally some recommendations for estimating the steady state strength from simple SPT test in gravely sands are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号