首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   6篇
大气科学   6篇
地球物理   33篇
地质学   7篇
海洋学   10篇
天文学   8篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   6篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   5篇
  1998年   1篇
  1995年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
31.
Until now, climate model intercomparison has focused primarily on annual and global averages of various quantities or on specific components, not on how well the general dynamics in the models compare to each other. In order to address how well models agree when it comes to the dynamics they generate, we have adopted a new approach based on climate networks. We have considered 28 pre-industrial control runs as well as 70 20th-century forced runs from 23 climate models and have constructed networks for the 500 hPa, surface air temperature (SAT), sea level pressure (SLP), and precipitation fields for each run. We then employed a widely used algorithm to derive the community structure in these networks. Communities separate “nodes” in the network sharing similar dynamics. It has been shown that these communities, or sub-systems, in the climate system are associated with major climate modes and physics of the atmosphere (Tsonis AA, Swanson KL, Wang G, J Clim 21: 2990–3001 in 2008; Tsonis AA, Wang G, Swanson KL, Rodrigues F, da Fontura Costa L, Clim Dyn, 37: 933–940 in 2011; Steinhaeuser K, Ganguly AR, Chawla NV, Clim Dyn 39: 889–895 in 2012). Once the community structure for all runs is derived, we use a pattern matching statistic to obtain a measure of how well any two models agree with each other. We find that, with the possible exception of the 500 hPa field, consistency for the SAT, SLP, and precipitation fields is questionable. More importantly, none of the models comes close to the community structure of the actual observations (reality). This is a significant finding especially for the temperature and precipitation fields, as these are the fields widely used to produce future projections in time and in space.  相似文献   
32.
A global dataset of more than 3,000 ground motion records from 536 sites from Greece, Italy, Turkey, USA and Japan is compiled and used to propose code-oriented elastic acceleration response spectra and soil amplification factors for a new site classification system, which, besides the classical geotechnical parameters $N_{SPT}, S_{u}$ and PI, uses also the fundamental period of the site, the thickness of soil deposits and the average shear wave velocity to the seismic bedrock, instead of $V_{s,30}$ . We propose a new classification system with the associated amplification factors and normalized response spectra for two seismicity levels, i.e. $M_{s}\le 5.5$ and $M_{s}>5.5$ . Uncertainties in the estimation of soil amplification factors are captured using a logic-tree approach, which allows the efficient use of alternative models and methods. The aim of this work is to improve the present EC8 soil classification. The effectiveness of the proposed classification system is compared to that of EC8 classification system using an error term, which represents the average dispersion of data within all categories of a given classification scheme. Error terms for the new classification system are lower than the error terms for EC8 classification system at all periods.  相似文献   
33.
ABSTRACT

This article is a concept paper, which discusses the definition of randomness, and the sources of randomness in the mathematical system as well as in the physical system (the Universe). We document that randomness is an inherited property of mathematics and of the physical world, shaping all observed forms and structures, and we discuss its role.
Editor D. Koutsoyiannis; Guest editor E. Volpi  相似文献   
34.
The scope of this study is to investigate the effect of the direction of seismic excitation on the fragility of an already constructed, 99‐m‐long, three‐span highway overpass. First, the investigation is performed at a component level, quantifying the sensitivity of local damage modes of individual bridge components (namely, piers, bearings, abutments, and footings) to the direction of earthquake excitation. The global vulnerability at the system level is then assessed for a given angle of incidence of the earthquake ground motion to provide a single‐angle, multi‐damage probabilistic estimate of the bridge overall performance. A multi‐angle, multi‐damage, vulnerability assessment methodology is then followed, assuming uniform distribution for the angle of incidence of seismic waves with respect to the bridge axis. The above three levels of investigation highlight that the directivity of ground motion excitation may have a significant impact on the fragility of the individual bridge components, which shall not be a priori neglected. Most importantly, depending on the assumptions made for the component to the system level transition, this local sensitivity is often suppressed. It may be therefore necessary, based on the ultimate purpose of the vulnerability or the life cycle analysis, to obtain a comprehensive insight on the multiple damage potential of all individual structural and foundation components under multi‐angle excitation, to quantify the statistical correlation among the distinct damage modes and to identify the components that are both most critical and sensitive to the direction of ground motion and carefully define their limit states which control the predicted bridge fragility. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
35.
Period lengthening, exhibited by structures when subjected to strong ground motions, constitutes an implicit proxy of structural inelasticity and associated damage. However, the reliable prediction of the inelastic period is tedious and a multi‐parametric task, which is related to both epistemic and aleatory uncertainty. Along these lines, the objective of this paper is to investigate and quantify the elongated fundamental period of reinforced concrete structures using inelastic response spectra defined on the basis of the period shift ratio (Tin/Tel). Nonlinear oscillators of varying yield strength (expressed by the force reduction factor, Ry), post‐yield stiffness (ay) and hysteretic laws are examined for a large number of strong motions. Constant‐strength, inelastic spectra in terms of Tin/Tel are calculated to assess the extent of period elongation for various levels of structural inelasticity. Moreover, the influence that structural characteristics (Ry, ay and degrading level) and strong‐motion parameters (epicentral distance, frequency content and duration) exert on period lengthening are studied. Determined by regression analyses of the data obtained, simplified equations are proposed for period lengthening as a function of Ry and Tel. These equations may be used in the framework of the earthquake record selection and scaling. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
36.
A thorough analysis of a proxy El Nino/Southern Oscillation (ENSO) record indicates that a bifurcation occurred in the ENSO system sometime around 5,000 years b.p. As a result of this bifurcation the attractor became higher dimensional and a new mechanism of instability was introduced. As a consequence of these changes the system switched from a dynamics where the normal condition (La Nina) was dominant to a dynamics characterized by more frequent and stronger El Nino events.  相似文献   
37.
Abundance of benthic bacteria, heterotrophic nanoflagellates and ciliates, extracellular enzymatic activities, bacterial C production, C mineralisation and sediment community oxygen consumption rates were measured in the Thermaikos Gulf (Northeastern Mediterranean), before (September 2001), and during intense trawling activities (October 2001 and February 2002). The biochemical composition of sedimentary organic matter has revealed that bottom trawling had an effect on the trophic state of Thermaikos Gulf. Changes on the benthic microbial food web were also recorded, during the three sampling seasons. Even though trawling-induced sediment resuspension did not alter significantly the abundance of the microbial components, with the exception of the most impacted station, it determined changes regarding their relative importance. Thus, the ratios of bacterium to nanoflagellates and ciliate to nanoflagellates abundance increased in the trawled stations, causing a sudden increase in bacterial C production, in comparison to the non-trawled station. Four months later, the effects of trawling on the microbial food web were less evident, masked possibly by the drastic decrease in the water temperature. The results of the present work suggest that bottom trawling induces alteration of the sedimentological variables and can be considered as a factor affecting the function of the microbial food web in marine coastal ecosystems. These alterations cause faster mobilisation of organic C buried in the sediment and increase nutrient concentrations and availability in the system, thus inducing an effect that could lead to coastal eutrophication.  相似文献   
38.
Seismic performance and dynamic response of bridge–embankments during strong or moderate ground excitations are investigated through finite element (FE) modelling and detailed dynamic analysis. Previous research studies have established that bridge–embankments exhibit increasingly flexible performance under high‐shear deformation levels and that soil displacements at bridge abutment supports may be significant particularly in the transverse direction. The 2D equation of motion is solved for the embankment, in order to evaluate the dynamic characteristics and to describe explicitly the seismic performance and dynamic response under transverse excitations accounting for soil nonlinearities, soil–structure interaction and imposed boundary conditions (BCs). Using the proposed model, equivalent elastic analysis was performed so as to evaluate the dynamic response of approach embankments while accounting for soil–structure interaction. The analytical procedures were applied in the case of a well‐documented bridge with monolithic supports (Painter Street Overcrossing, PSO) which had been instrumented and embankment participation was identified from its response records after the 1971 San Fernando earthquake. The dynamic characteristics and dynamic response of the PSO embankments were evaluated for alternative BCs accounting for soil–structure interaction. Explicit expressions for the evaluation of the critical embankment length Lc are provided in order to quantify soil contribution to the overall bridge system under strong intensity ground excitations. The dynamic response of the entire bridge system (deck–abutments–embankments) was also evaluated through simplified models that considered soil–structure interaction. Results obtained from this analysis are correlated with those of detailed 3D FE models and field data with good agreement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
39.
Abstract. Sediment characteristics determining macrofauna communities were investigated on the continental shelf of Crete. The sedimentary environment of the outer continental shelf of Crete is characterized by a silty substrate with significant decrease in chlorophyll a and organic carbon concentration with depth. Redox potential values indicated an ample supply of oxygen at all depths. Values of most production-related parameters TOC, chlorophyll a , ATP were found at the low end of the range reported from the literature even though the sampling stations were very close to the coastline. Organic carbon to chlorophyll ratios in the sediments indicated that most of the organic material is of phytoplankton origin; the quality of the organic material in the outer shelf, however, seems to be of lower bioavailability.  相似文献   
40.
Most of the visible universe is in the highly ionised plasma state, and most of that plasma is collision-free. Three physical phenomena are responsible for nearly all of the processes that accelerate particles, transport material and energy, and mediate flows in systems as diverse as radio galaxy jets and supernovae explosions through to solar flares and planetary magnetospheres. These processes in turn result from the coupling amongst phenomena at macroscopic fluid scales, smaller ion scales, and down to electron scales. Cross-Scale, in concert with its sister mission SCOPE (to be provided by the Japan Aerospace Exploration Agency—JAXA), is dedicated to quantifying that nonlinear, time-varying coupling via the simultaneous in-situ observations of space plasmas performed by a fleet of 12 spacecraft in near-Earth orbit. Cross-Scale has been selected for the Assessment Phase of Cosmic Vision by the European Space Agency.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号