首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1044篇
  免费   54篇
  国内免费   11篇
测绘学   30篇
大气科学   182篇
地球物理   248篇
地质学   436篇
海洋学   34篇
天文学   119篇
综合类   6篇
自然地理   54篇
  2023年   6篇
  2022年   2篇
  2021年   26篇
  2020年   27篇
  2019年   25篇
  2018年   38篇
  2017年   30篇
  2016年   60篇
  2015年   46篇
  2014年   61篇
  2013年   79篇
  2012年   61篇
  2011年   75篇
  2010年   59篇
  2009年   68篇
  2008年   58篇
  2007年   44篇
  2006年   55篇
  2005年   48篇
  2004年   31篇
  2003年   23篇
  2002年   25篇
  2001年   22篇
  2000年   14篇
  1999年   19篇
  1998年   13篇
  1997年   10篇
  1996年   9篇
  1995年   6篇
  1994年   6篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   8篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1980年   2篇
  1979年   2篇
  1974年   1篇
  1965年   1篇
  1962年   1篇
  1960年   1篇
  1958年   1篇
  1957年   2篇
  1951年   1篇
  1950年   1篇
排序方式: 共有1109条查询结果,搜索用时 21 毫秒
131.
Maar lakes in the Auckland Volcanic Field are important high-resolution archives of Holocene environmental change in the Southern Hemisphere mid-latitudes. Stable carbon and nitrogen isotope analyses were applied on bulk organic matter and the green alga Botryococcus from a sediment core from Lake Pupuke (Auckland, North Island, New Zealand) spanning the period since 7,165?cal.?year BP. The origin of organic matter was established using total-organic?Ccarbon-to-nitrogen ratios (TOC/TN) as well as organic carbon (??13COM) and nitrogen (??15N) isotope composition of potential modern sources. This approach demonstrated that the contribution of allochthonous organic matter to the lake sediment was negligible for most of the record. The sedimentary TOC/TN ratios that are higher than Redfield ratio (i.e. >7) are attributed to N-limiting conditions throughout the record. Variations of nitrogen and carbon isotopes during the last 7,165?years are interpreted as changes in the dominant processes in the lake. While epilimnetic primary productivity controlled isotope composition before 6,600?cal.?year BP, microbial processes, especially denitrification and methane oxidation, caused overall shifts of the ??15N and ??13C values since the Mid-Holocene. Comparisons with climate reconstructions from the Northern Island suggest that changes in the wind-induced lake overturn and a shift to more pronounced seasonality were the most likely causes for lake-internal changes since 6,600?cal.?year BP.  相似文献   
132.
The climate tourism potential of a region can be described by methods used in human biometeorology and applied climatology. Frequency analyses based on complex thermal bioclimatic indices (e.g. physiologically equivalent temperature) and diagrams of precipitation patterns based on thresholds offer new approaches of visualisation. An integral approach for tourism climatologic analyses is provided by the climate?Ctourism/transfer?Cinformation?Cscheme that also bases on frequency distributions of relevant factors and parameters which are important for a destination. The knowledge about the vertical variability of tourism climatologic factors is of high importance because of the several kinds of tourism activities affected by weather. The same holds for a quantification of extreme events like heat waves because of their possible effects on health and recreation over a year's course. The results show that the vertical gradient of bioclimatic and tourism-related parameters can be of value when developing strategies of adaption to climate change.  相似文献   
133.
134.
Fruit production systems that rely on winter chill for breaking of dormancy might be vulnerable to climatic change. We investigated decreases in the number of winter chilling hours (0–7.2°C) in four mountain oases of Oman, a marginal area for the production of fruit trees with chilling requirements. Winter chill was calculated from long-term hourly temperature records. These were generated based on the correlation of hourly temperature measurements in the oases with daylength and daily minimum and maximum temperatures recorded at a nearby weather station. Winter chill was estimated for historic temperature records between 1983 and 2008, as well as for three sets of synthetic 100-year weather records, generated to represent historic conditions, and climatic changes likely to occur within the next 30 years (temperatures elevated by 1°C and 2°C). Our analysis detected a decrease in the numbers of chilling hours in high-elevation oases by an average of 1.2–9.5 h/year between 1983 and 2008, a period during which, according to the scenario analysis, winter chill was sufficient for most important species in most years in the highest oasis. In the two climate change scenarios, pomegranates, the most important tree crop, received insufficient chilling in 13% and 75% of years, respectively. While production of most traditional fruit trees is marginal today, with trees barely fulfilling their chilling requirements, such production might become impossible in the near future. Similar developments are likely to affect other fruit production regions around the world.  相似文献   
135.
136.
We explore whether our models for starbursts, quiescent star-forming galaxies and for active galactic nuclei (AGN) dust tori are able to model the full range of Spitzer Infrared Spectrograph (IRS) spectra measured with Spitzer . The diagnostic plot of 9.7 μm silicate optical depth versus 6.2 μm polycyclic aromatic hydrocarbon (PAH) equivalent width, introduced by Spoon and coworkers in 2007, gives a good indication of the age and optical depth of a starburst, and of the contribution of an AGN dust torus. However, there is aliasing between age and optical depth at later times in the evolution of a starburst, and between age and the presence of an AGN dust torus. Modelling the full IRS spectra and using broad-band 25–850 μm fluxes can help to resolve these aliases. The observed spectral energy distributions require starbursts of a range of ages with initial dust optical depth ranging from 50–200, optically thin dust emission ('cirrus') illuminated by a range of surface brightnesses of the interstellar radiation field, and AGN dust tori with a range of viewing angles.  相似文献   
137.
Abstract— Batch culture experiments were performed to investigate the weathering of meteoritic material by iron‐oxidizing bacteria. The aerobic, acidophilic iron oxidizer (A. ferrooxidans) was capable of oxidizing iron from both carbonaceous chondrites (Murchison and Cold Bokkeveld) and iron meteorites (York and Casas Grandes). Preliminary iron isotope results clearly show contrasted iron pathways during oxidation with and without bacteria suggesting that a biological role in meteorite weathering could be distinguished isotopically. Anaerobic iron‐oxidizers growing under pH‐neutral conditions oxidized iron from iron meteorites. These results show that rapid biologically‐mediated alteration of extraterrestrial materials can occur in both aerobic and anaerobic environments. These results also demonstrate that iron can act as a source of energy for microorganisms from both iron and carbonaceous chondrites in aerobic and anaerobic conditions with implications for life on the early Earth and the possible use of microorganisms to extract minerals from asteroidal material.  相似文献   
138.
In order to better understand the long-term speciation and fractionation of Zn in soils, we investigated three soils naturally enriched in Zn (237–864 mg/kg Zn) from the weathering of Zn-rich limestones (40–207 mg/kg Zn) using extended X-ray absorption fine structure (EXAFS) spectroscopy and sequential extractions. The analysis of bulk EXAFS spectra by linear combination fitting (LCF) indicated that Zn in the oolitic limestones was mainly present as Zn-containing calcite (at site Dornach), Zn-containing goethite (Gurnigel) and Zn-containing goethite and sphalerite (Liestal). Correspondingly, extraction of the powdered rocks with 1 M NH4-acetate at pH 6.0 mobilized only minor fractions of Zn from the Gurnigel and Liestal limestones (<30%), but most Zn from the Dornach rock (81%). In the Dornach soil, part of the Zn released from the dissolving limestone was subsequently incorporated into pedogenic hydroxy-interlayered vermiculite (Zn-HIV, 30%) and Zn-containing kaolinite (30%) and adsorbed or complexed by soil organic and inorganic components (40%). The Gurnigel and Liestal soils contained substantial amounts of Zn-containing goethite (50%) stemming from the parent rock, smaller amounts (20%) of Zn-containing kaolinite (and possibly Zn-HIV), as well as adsorbed or complexed Zn-species (30%). In the soil from Liestal, sphalerite was only found in trace amounts, indicating its dissolution during soil formation. In sequential extractions, large percentages of Zn (55–85%) were extracted in recalcitrant extraction steps, confirming that Zn-HIV, Zn-containing kaolinite and Zn-containing goethite are highly resistant to weathering. These Zn-bearing phases thus represent long-term hosts for Zn in soils over thousands of years. The capability of these phases to immobilize Zn in heavily contaminated soils may however be limited by their uptake capacity (especially HIV and kaolinite) or their abundance in soil.  相似文献   
139.
In many river basins, floodplain soils have accumulated a variety of metal contaminants, which might be released during periods of flooding. We investigated the dynamics of copper, cadmium, lead, zinc, and nickel in a contaminated freshwater floodplain soil under a realistic sulfate-limited flooding regime in microcosm experiments. We found that most contaminants were initially mobilized by processes driven by the reductive dissolution of Fe(III) and Mn(IV, III) (hydr)oxides. Subsequently, bacterial sulfate respiration resulted in the transformation of the entire available sulfate (2.3 mmol/kg) into chromous reducible sulfur (CRS). Cu K-edge X-ray absorption fine structure (XAFS) spectroscopy revealed that the soil Cu speciation changed from predominantly Cu(II) bound to soil organic matter (SOM) intermittently to 14% metallic Cu(0) and subsequently to 66% copper sulfide (CuxS). These CuxS precipitates accounted for most of the formed CRS, suggesting that CuxS was the dominant sulfide phase formed in the flooded soil. Sequential metal extractions, in agreement with CRS results, suggested that easily mobilizable Cd was completely and Pb partially sequestered in sulfide precipitates, controlling their dissolved concentrations to below detection limits. In contrast, Zn and Ni (as well as Fe) were hardly sequestered into sulfide phases, so that micromolar levels of dissolved Zn and Ni (and millimolar dissolved Fe(II)) persisted in the reduced soil. The finding that Cu, Cd, and Pb were sequestered (but hardly any Zn, Ni, and Fe) is consistent with the thermodynamically predicted sulfide ladder following the increasing solubility products of the respective metal sulfides. The observation that Cd and Pb were sequestered in sulfides despite the presence of remaining SOM-bound Cu(II) suggested that the kinetics of Cu(II) desorption, diffusion, and/or CuxS precipitation interfered with the sulfide ladder. We conclude that the dynamics of multiple metal contaminants are intimately coupled under sulfate limitation by the relative thermodynamic stabilities and formation kinetics of the respective metal sulfides.  相似文献   
140.
With previous two-dimensional (2D) simulations based on surface-specific feldspar dissolution succeeding in relating the macroscopic feldspar kinetics to the molecular-scale surface reactions of Si and Al atoms ( [Zhang and Lüttge, 2008] and [Zhang and Lüttge, 2009]), we extended our modeling effort to three-dimensional (3D) feldspar particle dissolution simulations. Bearing on the same theoretical basis, the 3D feldspar particle dissolution simulations have verified the anisotropic surface kinetics observed in the 2D surface-specific simulations. The combined effect of saturation state, pH, and temperature on the surface kinetics anisotropy has been subsequently evaluated, found offering diverse options for morphological evolution of dissolving feldspar nanoparticles with varying grain sizes and starting shapes. Among the three primary faces on the simulated feldspar surface, the (1 0 0) face has the biggest dissolution rate across an extensively wide saturation state range and thus acquires a higher percentage of the surface area upon dissolution. The slowest dissolution occurs to either (0 0 1) or (0 1 0) faces depending on the bond energies of Si-(O)-Si (ΦSi-O-Si/kT) and Al-(O)-Si (ΦAl-O-Si/kT). When the ratio of ΦSi-O-Si/kT to ΦAl-O-Si/kT changes from 6:3 to 7:5, the dissolution rates of three primary faces change from the trend of (1 0 0) > (0 1 0) > (0 0 1) to the trend of (1 0 0) > (0 0 1) > (0 1 0). The rate difference between faces becomes more distinct and accordingly edge rounding becomes more significant. Feldspar nanoparticles also experience an increasing degree of edge rounding from far-from-equilibrium to close-to-equilibrium. Furthermore, we assessed the connection between the continuous morphological modification and the variation in the bulk dissolution rate during the dissolution of a single feldspar particle. Different normalization treatments equivalent to the commonly used mass, cube assumption, sphere assumption, geometric surface area, and reactive surface area normalizations have been used to normalize the bulk dissolution rate. For each of the treatments, time consistence and grain size dependence of the normalized dissolution rate have been evaluated and the results revealed significant dependences on the magnitude of surface kinetic anisotropy under differing environmental conditions. In general, the normalized dissolution rates are strongly dependent on grain size. Time-consistent normalization treatment varies with the investigated condition. The modeling results suggest that the sphere-, cube-, and BET-normalized dissolution rates are appropriate under the far-from-equilibrium conditions at low pH where these normalizations are time-consistent and are slightly dependent on grain size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号