首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   4篇
  国内免费   2篇
测绘学   5篇
大气科学   1篇
地球物理   18篇
地质学   51篇
海洋学   10篇
天文学   56篇
综合类   1篇
自然地理   5篇
  2021年   1篇
  2019年   2篇
  2018年   8篇
  2017年   6篇
  2016年   4篇
  2014年   6篇
  2013年   7篇
  2012年   3篇
  2011年   7篇
  2010年   7篇
  2009年   6篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   8篇
  1984年   5篇
  1983年   7篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1976年   1篇
  1974年   3篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有147条查询结果,搜索用时 15 毫秒
51.
—We study the frequency- and time-domain techniques which have been used to measure shear attenuation in the mantle using long-period body waveforms. In the time-domain technique, waveform modeling is carried out and the attenuation model that best fits the data is chosen. In the frequency-domain technique, we solve for the attenuation model that best fits the spectra of the seismic waveforms. Though theoretically both these techniques are equivalent, modeling assumptions and measurement biases associated with each technique can give rise to different results. In this study, we compare these two techniques in terms of their accuracy in obtaining mantle shear attenuation. Specifically, we estimate the biases in constraining attenuation from differential SS?S and absolute S waveforms. We carry out these tests using realistic synthetic seismograms and we follow this with an analysis of recorded data to verify the results from the synthetic tests. For the SS?S waveforms, the primary biasing factors are interference with seismic phases due to mantle discontinuities and due to crustal reverberation under the SS bounce point. These factors can affect the t* measurements by up to 0.5 s in the frequency domain and more than 1.5 s in the time domain. For the S waveforms, the frequency-domain measurements are accurate to 0.3 s while the time-domain measurements can vary by more than 2.0 s from the predicted values. These errors are also manifested in the t* measurements made using teleseismically recorded waveforms and lead to comparatively larger noise levels in the time-domain measurements. Based on these results, we propose that in long-period body-wave attenuation studies, frequency-domain techniques should be the method of choice.  相似文献   
52.
53.
Repeated explosions in the nuclei of galaxies are now accepted as observationally established phenomena. Each explosion leads to the ejection of gas from the central region of a galaxy with velocities depending on the strength of the explosive event. In the process the nucleus temporarily becomes gas-deficient. It is suggested that the mass los is replenished by the accretion of the mass which is shed by those evolved stars in the galactic bulge that possess relatively low rotational velocities. The gas to be accreted is assumed to be magnetized. In the present model, the accretion rate has been assumed to be a function of both radial distance and time. The cross-radial equation of motion has been solved to derive the expression for the rotational velocity which is found to bealmost linear with the radial distance from the centre. The radial equation has been solved to calculate the time-scale over which the nucleus accumulates sufficient mass to undergo instability and suffer explosion. The calculated time-scale range from few multiples of 107 to a few multiples of 108 yr. This range agrees very well with that as has been suggested on the basis of observation in the case of our own Galaxy.  相似文献   
54.
55.
Sharp density gradients coupled with field-aligned currents can give rise to short wavelength (?15 m) drift waves due to collisional effects in the F-region of the auroral ionosphere. In this wavelength range, ion-ion collisions at altitudes of 300–450 km render the ions unmagnetized and a field-aligned current can drive a drift wave, propagating almost transverse to the magnetic field, unstable due to the resistance in electron parallel motion arising from electron collisions.  相似文献   
56.
We present computed spectra, as seen by a distant observer, from the accretion disc around a rapidly rotating neutron star. Our calculations are carried out in a fully general relativistic framework, with an exact treatment of rotation. We take into account the Doppler shift, gravitational redshift and light-bending effects in order to compute the observed spectrum. We find that light bending significantly modifies the high-energy part of the spectrum. Computed spectra for slowly rotating neutron stars are also presented. These results would be important for modelling the observed X-ray spectra of low-mass X-ray binaries containing fast-spinning neutron stars.  相似文献   
57.
The problem of post-explosive gas depletion in the central region of normal spiral galaxies like our own has been investigated. It has been calculated that with a plausible density law and with some restriction on gas temperature, a sufficient quantity of gas will be depleted from the central region over a time-scale ranging from a few times 107 to a few times 108 years, the exact time depending on the particular density law. Such a time-scale has been suggested by many authors as the period for one phase of activity in the nuclei of these galaxies. A similar time-scale has also been proposed by several authors as that for the formation and destruction of the spiral patterns of these galaxies.  相似文献   
58.
59.
In the rapidly developing field of study of the transient sky, fast radio transients are perhaps the most exciting objects of scrutiny at present. The SKA, with its wide field-of-view and significant improvement in sensitivity over existing facilities, is expected to detect a plethora of fast transients which, in addition to help resolve the mysteries surrounding their nature and origin, will also lead to other interesting applications in astrophysics. We explore some of these possibilities here, and also emphasize the current status and future plans of the Indian community working in this area, in the context of ongoing work and extension of this to the SKA.  相似文献   
60.
Petrography and mineralogy of four calc-alkaline granitoid plutons Agarpur, Sindurpur, Raghunathpur and Sarpahari located from west to east of northern Purulia of Chhotanagpur Gneissic Complex, eastern India, are investigated. The plutons, as a whole, are composed of varying proportions of Qtz–Pl–Kfs–Bt–Hbl±Px–Ttn–Mag–Ap–Zrn±Ep. The composition of biotite is consistent with those of calc-alkaline granitoids. Hornblende–plagioclase thermometry, aluminium-in-hornblende barometry and the assemblage sphene–magnetite–quartz were used to determine the P, T and \(f_{\mathrm{O}_2}\) during the crystallisation of the parent magmas in different plutons. The plutons are crystallised under varying pressures (6.2–2.4 kbar) and a wide range of temperatures (896–\(718{^{\circ }}\hbox {C}\)) from highly oxidised magmas (log \(f_{\mathrm{O}_2}\) \(-11.2\) to \(-15.4\) bar). The water content of the magma of different plutons varied from 5.0 to 6.5 wt%, consistent with the calc-alkaline nature of the magma. Calc-alkaline nature, high oxygen fugacity and high \(\hbox {H}_{2}\hbox {O}_{{\mathrm{melt}}}\) suggest that these plutons were emplaced in subduction zone environment. The depths of emplacement of these plutons seem to increase from west to east. Petrologic compositions of these granitoids continuously change from enderbite (opx-tonalite: Sarpahari) in the east to monzogranite (Raghunathpur) to syenogranite (Sindurpur) to alkali feldspar granite (Agarpur) in the west. The water contents of the parental magmas of different plutons also increase systematically from east to west. No substantial increase in the depth of emplacement is found in these plutons lying south and north of the major shear zone passing through the study area suggesting the strike-slip nature of the east–west shear zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号