首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   3篇
  国内免费   1篇
测绘学   2篇
大气科学   4篇
地球物理   9篇
地质学   24篇
海洋学   3篇
天文学   3篇
自然地理   4篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   7篇
  2009年   2篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2000年   1篇
  1999年   1篇
  1981年   1篇
排序方式: 共有49条查询结果,搜索用时 31 毫秒
11.
The clay mineralogy of the Newark Supergroup (Upper Triassic/Lower Jurassic) in the Connecticut Valley was studied by X-ray diffraction analysis. Clay minerals identified in 126 samples are illite, chlorite, smectite, kaolinite, vermiculite, expandable chlorite, mixed-layer illite/smectite, mixed-layer chlorite/smectite, and mixed-layer chlorite/vermiculite. In general, the rocks are illitic with subordinate amounts of chlorite. However, the various lithofacies in the Newark Supergroup are characterized by distinct clay-mineral assemblages. Red beds of floodplain origin contain clays mainly of detrital nature with 2M illite most abundant. Subordinate amounts of chlorite, smectite, vermiculite, kaolinite and mixed-layer illite/smectite are also present. An interstratified chlorite/vermiculite occurs in red mudstone underlying basalt flows. Lacustrine gray beds are generally characterized by the clay-mineral assemblage 1Md illite + chlorite with minor amounts of smectite ane expandable chlorite. An interstratified chlorite/smectite predominates in gray mudstone associated with perennial lake cycles in the East Berlin Formation. Black shales of deeper lacustrine origin contain the assemblage 1Md ifillite + trioctahedral smectite and traces of chlorite. Illite and smectite also occur as mixed-layer phases.In many respects, the distribution of clay minerals in the Connecticut Valley can be likened to the general scheme proposed for the Permo-Triassic basins of Europe and Africa. These display both vertical and horizontal variations in clay-mineral assemblages that reflect the chemical and spatiotemporal evolution of intrabasin depositional and diagenetic environments. Chemical data indicate that magnesium, especially, was concentrated in the black muds of large perennial lakes that intermittently occupied the Connecticut rift valley. Pore waters derived from these sediments played an important role in the development of Mg-rich 2 : 1 and interstratified clay minerals during early diagenesis.  相似文献   
12.
13.
Abstract— Core from the Yaxcopoil‐1 (Yax‐1) hole, drilled as a result of the Chicxulub Scientific Drilling Project (CSDP), has been analyzed to investigate the relationship between opaque mineralogy and rock magnetic properties. Twenty one samples of suevite recovered from the depth range 818–894 m are generally paramagnetic, with an average susceptibility of 2000 times 10?6 SI and have weak remanent magnetization intensities (average 0.1 A/m). The predominant magnetic phase is secondary magnetite formed as a result of low temperature (<150 °C) alteration. It occurs in a variety of forms, including vesicle infillings associated with quartz and clay minerals and fine aggregates between plagioclase/diopside laths in the melt. Exceptional magnetic properties are found in a basement clast (metamorphosed quartz gabbro), which has a susceptibility of >45000 times 10?6 SI and a remanent magnetization of 77.5 A/m. Magnetic mafic basement clasts are a common component in the Yax‐1 impactite sequence. The high susceptibility and remanence in the mafic basement clasts are caused by the replacement of amphiboles and pyroxenes by an assemblage with fine <1 μm magnetite, ilmenite, K‐feldspar, and stilpnomelane. Replacement of the mafic minerals by the magnetic alteration assemblage occurred before impact. Similar alteration mechanisms, if operative within the melt sheet, could explain the presence of the high amplitude magnetic anomalies observed at Chicxulub.  相似文献   
14.
This paper examines recurrent spatial patterns of prehistoric sites in relation to landforms, alluvial fills, and soil development in the uplands and valleys of the Madaba and Dhiban Plateaus of Jordan. Mousterian lithics (Middle Paleolithic) are largely found on high strath terraces plateaus, where they are associated with red Mediterranean soils. In valleys, Upper Paleolithic sites are often associated with reworked loess deposits of the Dalala allostratigraphic unit. Epipaleolithic occupations are found stratified in deposits of the Thamad Terrace, and Pre‐Pottery Neolithic and Pottery Neolithic occupations are associated with colluvium mantling the Thamad Terrace. The Tur al‐Abyad Terrace and the Iskanderite alluvial inset are the remnants of middle Holocene floodplains, which were attractive areas for Chalcolithic and Early Bronze Age settlements. Sometime around 4000 B.C., stream incision and further lateral erosion destroyed these floodplains. These historic terraces are underlain by alluvial deposits ranging in age from Roman to Early Islamic periods. The sequence of allostratigraphic units, paleosols, and terraces are the basis for reconstructing phases of fluvial aggradation and stream incision during the past 20,000 years. © 2005 Wiley Periodicals, Inc.  相似文献   
15.
Increasing research has suggested that biosolids generated from municipal wastewater treatment can be a major sink for many pharmaceuticals and personal care products (PPCPs) and their land application potentially introduces these contaminants into the terrestrial and aquatic environments. In this study, methods were developed for the analysis of 14 PPCPs in biosolids and soils using pressurized liquid extraction, solid phase extraction and liquid chromatography‐tandem mass spectrometry. Recoveries were over 50% for all analytes except diphenhydramine (?30%) in soils. Soil properties or type of biosolids showed minor effects on method recoveries. Estimated method limits of quantification (LOQ) range from 0.1–15 ng g–1 for soil and 0.3–27 ng g–1 for biosolids. A field study utilizing the methods revealed that other than carbamazepine‐10,11‐epoxide, all targeted compounds were detected in biosolids. Diphenhydramine, fluoxetine, triclosan and triclocarban were detected up to the μg g–1 range with the highest concentration of 23 μg g–1 for triclocarban. Seven of the PCCPs found in biosolids were also detected in agricultural soils amended with these biosolids and several (carbamazepine, diphenhydramine, and triclocarban) appeared to be persistent in soils. Triclocarban was also found most abundant in soils with the highest average concentration of 0.2 μg g–1 while the rest of compounds were in the lower ng g–1 range. Generally, the concentrations found on the fields were 2–3 degrees of magnitude lower than in the biosolids, which is likely to be due to dilution, degradation and leaching processes.  相似文献   
16.
Species distribution models are used extensively in predicting the distribution of vegetation across a landscape. Accuracy of the species distribution maps produced by these models deserves attention, since low accuracy maps may lead to erroneous conservation decisions. While plot size is known to influence measures of species richness, its effect on our ability to predict species distribution ranges has not been tested. Our aim is to test whether the accuracy of the distribution maps produced depend on the size of the plot (quadrat) used to collect biological data in the field. In this study, the presences of four plant species were recorded in five sizes of circular plots, with radii ranging from 8 to 100 m. Logistic regression-based models were used to predict the distributions of the four plant species based on empirical evidence of their relationship with eight environmental predictors: distance to river, slope, aspect, altitude, and four principle component axes derived using reflectance values from Aster images. We found that plot size affected the probability of recording the four species, with reductions in plot size generally increasing the frequency of recorded absences. Plot size also significantly affected the likelihood of correctly predicting the distribution of species whenever plot size was below the minimum size required to consistently record species’ presence. Furthermore, the optimal plot size for fitting species distribution models varied among species. Finally, plot size had little impact on overall accuracy, but a strong, positive impact on Kappa accuracy (which provides a stronger measure of model accuracy by accounting for the effects of chance agreements between predictions and observations). Our results suggest that optimal plot size must be considered explicitly in the creation of species distribution models if they are to be successfully adopted into conservation efforts.  相似文献   
17.
Stable isotope tracers of δ18O and δ2H are increasingly being applied in the study of water cycling in regional-scale watersheds in which human activities, like river regulation, are important influences. In 2015, δ18O and δ2H were integrated into a water quality survey in the Muskoka River Watershed with the aim to provide new regional-scale characterization of isotope hydrology in the 5,100-km2 watershed located on the Canadian Shield in central Ontario, Canada. The forest dominated region includes ~78,000 ha of lakes, 42 water control structures, and 11 generating stations, categorized as “run of river.” Within the watershed, stable isotope tracers have long been integrated into hydrologic process studies of both headwater catchments and lakes. Here, monthly surveys of δ18O and δ2H in river flow were conducted in the watershed between April 2015 and November 2016 (173 surface water samples from 10 river stations). Temporal patterns of stable isotopes in river water reflect seasonal influences of snowmelt and summer-time evaporative fractionation. Spatial patterns, including differences observed during extreme flood levels experienced in the spring of 2016, reflect variation in source contributions to river flow (e.g., snowmelt or groundwater versus evaporatively enriched lake storage), suggesting more local influences (e.g., glacial outwash deposits). Evidence of combined influences of source mixing and evaporative fractionation could, in future, support application of tracer-enabled hydrological modelling, estimation of mean transit times and, as such, contribute to studies of water quality and water resources in the region.  相似文献   
18.
The Amy Lake PGE zone is a “low-sulfide-type” Cu-(Ni-)PGE mineralization in the East Range footwall of the 1.85 Ga Sudbury Igneous Complex occurring in a 100-m-wide Sudbury Breccia belt that coincides with an impact-related major fracture zone (Bay Fault zone). Detailed hydrothermal alteration mapping, fluid inclusion, trace element, and stable isotope studies revealed a complex alteration and mineralization history in a multi-source, multi-stage Sudbury-related hydrothermal system. The two major stages of syn-Sudbury hydrothermal activity are characterized by similarly high-salinity, high-temperature fluids that are (1) locally derived from footwall granophyre bodies, and typified with high Ni/Cu and PGE/S ratios and high REE contents (magmatic–hydrothermal stage), and (2) a more voluminous Cu–Ni–PGE-rich fluid flux probably originated from the Sudbury Igneous Complex/footwall contact (hydrothermal stage). The second hydrothermal flux was introduced by brittle fractures in the area and resulted in a complex zonation of alteration assemblages and mineralization governed by local footwall composition. The Sudbury-related hydrothermal event was overprinted by shear-related epidote veining and calcite–chlorite replacement, both regionally present in the Sudbury structure. Based on analogies, the most important factors involved in the formation of hydrothermal low-sulfide mineralization are proposed to be (1) accumulation of PGE-enriched fluids, (2) large-scale brittle structures as conduits to these fluids, and (3) adequate host rock composition as a chemical trap resulting in sulfide and PGM precipitation. In environments meeting these criteria, hydrothermal PGE mineralization is known to have formed not only in the Sudbury footwall but also from mafic–ultramafic intrusions associated with primary magmatic PGE from several locations around the world.  相似文献   
19.
The Garson Ni–Cu–platinum group element deposit is a deformed, overturned, low Ni tenor contact-type deposit along the contact between the Sudbury Igneous Complex (SIC) and stratigraphically underlying rocks of the Huronian Supergroup in the South Range of the 1.85-Ga Sudbury structure. The ore bodies are coincident with steeply south-dipping, north-over-south D1 shear zones, which imbricated the SIC, its ore zones, and underlying Huronian rocks during mid-amphibolite facies metamorphism. The shear zones were reactivated as south-over-north, reverse shear zones during D2 at mid-greenschist facies metamorphism. Syn-D2 metamorphic titanite yields an age of 1,849?±?6 Ma, suggesting that D1 and D2 occurred immediately after crystallization of the SIC during the Penokean Orogeny. The ore bodies plunge steeply to the south parallel to colinear L1 and L2 mineral lineations, indicating that the geometry of the ore bodies are strongly controlled by D1 and D2. Sulfide mineralization consists of breccia ores, with minor disseminated sulfides hosted in norite, and syn-D2 quartz–calcite–sulfide veins. Mobilization by ductile plastic flow was the dominant mechanism of sulfide/metal mobilization during D1 and D2, with additional minor hydrothermal mobilization of Cu, Fe, and Ni by hydrothermal fluids during D2. Metamorphic pentlandite overgrows a S1 ferrotschermakite foliation in D1 deformed ore zones. Pentlandite was exsolved from recrystallized polygonal pyrrhotite grains after cessation of D1, which resulted in randomly distributed large pentlandite grains and randomly oriented pentlandite loops along the grain boundaries of polygonal pyrrhotite within the breccia ore. It also overgrows a S2 chlorite foliation in D2 shear zones. Pyrrhotite recrystallized and was flattened during D2 deformation of breccia ore along narrow shear zones. Exsolution of pentlandite loops along the grain boundaries of these flattened grains produced a pyrrhotite–pentlandite layering that is not observed in D1 deformed ore zones. The overprinting of the two foliations by pentlandite and exsolution of pentlandite along the grain boundaries of flattened pyrrhotite grains suggest that the Garson ores reverted to a metamorphic monosulfide solid solution at temperatures ranging between 550 and 600 °C during D1 and continued to deform as a monosulfide solid solution during D2.  相似文献   
20.
The seasonal occurrence of cownose rays (Rhinoptera bonasus) within North Carolina’s estuarine and coastal waters was examined from aerial surveys conducted during 2004–2006. Generalized linear models were used to assess the influence of several variables (month, year, habitat type, sea surface temperature, and turbidity) on predicted counts of cownose rays. The spatial distributions of rays were compared by season, and differences in group size were tested as a function of season and habitat. Cownose ray data associated with the North Carolina Division of Marine Fisheries (NCDMF) fishery independent gill net sampling program in Pamlico Sound was also examined as a function of season and year, and compared with aerial observations. Rays immigrated into the region in mid-spring (April), dispersed throughout the estuary in the summer (June–August), and emigrated by late autumn (November). Predicted counts were highest in the spring (April, May) and autumn (September–November) for coastal habitats and highest in the summer for estuarine habitats. Predicted counts were also higher in the coastal region than estuarine and higher when sea surface temperatures were above average. Comparison of group size by habitat type revealed substantially larger group sizes in the coastal habitat than the estuarine. In addition, for the estuary, spring surveys had larger group sizes than summer surveys; for the coastal habitat, autumn group sizes were significantly larger than spring or summer group sizes. The NCDMF gill net sampling surveys indicated similar trends in monthly migration patterns as well as increased ray abundance in 2008 and 2009 compared with 2003–2007. These results suggest that North Carolina’s waters serve as important habitat during the seasonal migration of cownose rays, as well as during the summer when the species may utilize the estuarine region as a nursery and/or for foraging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号