首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   1篇
大气科学   11篇
地球物理   28篇
地质学   15篇
海洋学   6篇
天文学   7篇
自然地理   30篇
  2020年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   5篇
  2000年   2篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1985年   4篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   4篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1968年   1篇
  1963年   1篇
  1960年   1篇
  1959年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
21.
22.
23.
A catalog of 232 apparently interacting galaxy pairs of the M51 class is presented. Catalog members were identified from visual inspection of multi-band images in the IRSA archive. The major findings in the compilation of this catalog are (1) A surprisingly low number of the main galaxies in M51 systems are early type spirals and barred spirals. (2) Over 70% of the main galaxies in M51 systems are 2-armed spirals. (3) Some systems that were classified as M51 types in previous studies are not M51 types as defined in this catalog. There were a number of systems previously classified as M51 systems for which the “companion” is identified as an HII region within the main galaxy or foreground star within the Milky Way. (4) It was found that only 18% of the M51 type companions have redshift measurements in the literature. There is a significant need for spectroscopic study of the companions in order to improve the value of the catalog as a sample for studying the effects of M51 type interaction on galaxy dynamics, morphology, and star formation. Further spectroscopy will also help constrain the statistics of possible chance projections between foreground and background galaxies in the catalog. The catalog also contains over 430 additional systems which are classified as “possible M51” systems. The reasons for classifying certain systems as possible M51 systems are discussed.  相似文献   
24.
Natural Hazards - Nowadays, floods have become the widest global environmental and economic hazard in many countries, causing huge loss of lives and materials damages. It is, therefore, necessary...  相似文献   
25.
Mt. Merapi, Indonesia, is one of the most active and dangerous volcanoes in the Torrid Zone. This volcano has erupted frequently and has produced pyroclastic flows following the collapse of the summit lava dome. We used Synthetic Aperture Radar (SAR) data acquired by JERS-1 and RADARSAT-1 satellites from April 1996 to July 2006 to clarify the distribution patterns of the pyroclastic flow deposits. The extent of the deposits, termed P-zones, was accurately extracted by ratio operation and low-level feature extraction from SAR intensity images. These images highlighted temporal changes of the distribution area, perimeter, flow distance, included angle, and collapse direction. To validate the image-processing results, reflectance spectra of the rock samples collected after the eruption in June 2006 were measured in a laboratory. The reflectance spectra of all samples showed similar characteristics to the reference spectra, which were derived from atmospheric correction of Hyperion sensor image data covering the lava dome at the summit. Therefore, P-zones were confirmed to be the pyroclastic flow deposits originating from destruction of the lava dome at the summit. The image-processing results clarified that the extent of the distribution areas, perimeter, flow distances, and included angle of the P-zones were variable among the eruptions, while the collapse direction had a constant pattern. The collapse pattern followed a clockwise change from the south toward the west. By comparing the ratio maps of Bouguer gravity anomaly data in two periods, the change was interpreted to originate from the inclination of the conduit and the formation of shallow and deep magma reservoirs.  相似文献   
26.
Summary. The Green's function, in a constant gradient medium, is derived for an explosive point source, in the frequency and the time domains. The analytical dynamic ray tracing (DRT) solution is rederived with conditions stated in Part I. The Gaussian beam (GB) solution is investigated. New beam parameters and conditions are defined. Comparisons between exact and approximate solutions are undertaken.
For both methods, DRT and GB, conditions of validity are explicit and quantitative. An accuracy criterion is defined in the time domain, and measures a global relative error. The range of validity is expressed in the form of two inequalities for the dynamic ray tracing method and of five inequalities for the Gaussian beam method. Results remain accurate at ray turning points. For the types of medium considered, the breakdown of the dynamic ray tracing method is smoother and better behaved than that of Gaussian beams. As examples, a vertical seismic profiling configuration, and a shallow earthquake are modelled, using Gaussian beams.  相似文献   
27.
28.
Numerical simulations using a physiologically-based model of marine ecosystem size spectrum are conducted to study the influence of primary production and temperature on energy flux through marine ecosystems. In stable environmental conditions, the model converges toward a stationary linear log–log size-spectrum. In very productive ecosystems, the model predicts that small size classes are depleted by predation, leading to a curved size-spectrum.It is shown that the absolute level of primary production does not affect the slope of the stationary size-spectrum but has a nonlinear effect on its intercept and hence on the total biomass of consumer organisms (the carrying capacity). Three domains are distinguished: at low primary production, total biomass is independent from production changes because loss processes dominate dissipative processes (biological work); at high production, ecosystem biomass is proportional to primary production because dissipation dominates losses; an intermediate transition domain characterizes mid-production ecosystems. Our results enlighten the paradox of the very high ecosystem biomass/primary production ratios which are observed in poor oceanic regions. Thus, maximal dissipation (least action and low ecosystem biomass/primary production ratios) is reached at high primary production levels when the ecosystem is efficient in transferring energy from small sizes to large sizes. Conversely, least dissipation (most action and high ecosystem biomass/primary production ratios) characterizes the simulated ecosystem at low primary production levels when it is not efficient in dissipating energy.Increasing temperature causes enhanced predation mortality and decreases the intercept of the stationary size spectrum, i.e., the total ecosystem biomass. Total biomass varies as the inverse of the Arrhenius coefficient in the loss domain. This approximation is no longer true in the dissipation domain where nonlinear dissipation processes dominate over linear loss processes. Our results suggest that in a global warming context, at constant primary production, a 2–4 °C warming would lead to a 20–43% decrease of ecosystem biomass in oligotrophic regions and to a 15–32% decrease of biomass in eutrophic regions.Oscillations of primary production or temperature induce waves which propagate along the size-spectrum and which amplify until a “resonant range” which depends on the period of the environmental oscillations. Small organisms oscillate in phase with producers and are bottom-up controlled by primary production oscillations. In the “resonant range”, prey and predators oscillate out of phase with alternating periods of top-down and bottom-up controls. Large organisms are not influenced by bottom-up effects of high frequency phytoplankton variability or by oscillations of temperature.  相似文献   
29.
30.
Leaf area index (LAI) and canopy coverage are important parameters when modelling snow process in coniferous forests, controlling interception and transmitting radiation. Estimates of LAI and sky view factor show large variability depending on the estimation method used, and it is not clear how this is reflected in the calculated snow processes beneath the canopy. In this study, the winter LAI and sky view fraction were estimated using different optical and biomass‐based approximations in several boreal coniferous forest stands in Fennoscandia with different stand density, age and site latitude. The biomass‐based estimate of LAI derived from forest inventory data was close to the values derived from the optical measurements at most sites, suggesting that forest inventory data can be used as input to snow hydrological modelling. Heterogeneity of tree species and site fertility, as well as edge effects between different forest compartments, caused differences in the LAI estimates at some sites. A snow energy and mass balance model (SNOWPACK) was applied to detect how the differences in the estimated values of the winter LAI and sky view fraction were reflected in simulated snow processes. In the simulations, an increase in LAI and a decrease in sky view fraction changed the snow surface energy balance by decreasing shortwave radiation input and increasing longwave radiation input. Changes in LAI and sky view fraction affected directly snow accumulation through altered throughfall fraction and indirectly snowmelt through the changed surface energy balance. Changes in LAI and sky view fraction had a greater impact on mean incoming radiation beneath the canopy than on other energy fluxes. Snowmelt was affected more than snow accumulation. The effect of canopy parameters on evaporation loss from intercepted snow was comparable with the effect of variation in governing meteorological variables such as precipitation intensity and air temperature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号