首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   8篇
大气科学   8篇
地球物理   24篇
地质学   7篇
海洋学   2篇
自然地理   2篇
  2022年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   6篇
  2012年   1篇
  2010年   3篇
  2009年   6篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
41.
The objective of this paper is to evaluate trends and spatial patterns of drought incidence across the Omo‐Ghibe River Basin using monthly rainfall data from eight stations for the period 1972–2007. It also aims to estimate the probability of drought episodes for a 100‐year period. Drought indices were generated using the Standard Precipitation Index (SPI) computed at 3‐, 6‐, 12‐ and 24‐month time‐steps for three intensity classes: moderate, severe and extreme drought events. The Mann–Kendall's trend test and Sen's slope estimator were employed to detect temporal changes. The results show complex spatial patterns on the frequency and magnitude of drought events across the study area for all timescales and intensity classes. However, the total number of drought events for the three intensity classes for all timescales were larger in the southern lowlands, where there exists a serious water scarcity for the rain‐fed pastoral system, than in the northeastern part (around Wolaita Sodo area). In contrast to this, the longest and most extreme (SPI < ?4.0) drought events for all timescales were observed at Wolaita Sodo station. In a 100‐year period one could expect 57–69 drought events with 3 months' duration, 19–34 events with 6 months' duration, 9–16 events with 12 months' duration and 5–9 events with 24 months' duration. The SPI values show negative rainfall anomalies in the 1980s while positive anomalies have occurred in the 1990s and 2000s, which implies tendency towards decreasing drought events. The Mann–Kendall's trend test for the 12‐ and 24‐month timescales and for seasonal events also confirms this general trend.  相似文献   
42.
Abstract

Much of the prairie region in North America is characterized by relatively flat terrain with many depressions on the landscape. The hydrological response (runoff) is a combination of the conventional runoff from the contributing areas and the occasional overflow from the non-contributing areas (depressions). In this study, we promote the use of a hybrid modelling structure to predict runoff generation from prairie landscapes. More specifically, the Soil and Water Assessment Tool (SWAT) is fused with artificial neural networks (ANNs), so that SWAT and the ANN module deal with the contributing and non-contributing areas, respectively. A detailed experimental study is performed to select the best set of inputs, training algorithms and hidden neurons. The results obtained in this study suggest that the fusion of process-based and data-driven models can provide improved modelling capabilities for representing the highly nonlinear nature of the hydrological processes in prairie landscapes.
Editor D. Koutsoyiannis; Associate editor L. See  相似文献   
43.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号