首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   0篇
  国内免费   2篇
大气科学   4篇
地球物理   4篇
地质学   83篇
海洋学   9篇
自然地理   18篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2007年   9篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2002年   2篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   8篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   8篇
  1989年   10篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   2篇
  1963年   1篇
  1962年   1篇
排序方式: 共有118条查询结果,搜索用时 46 毫秒
21.
Depositional slope systems along continental margins contain a record of sediment transfer from shallow‐water to deep‐water environments and represent an important area for natural resource exploration. However, well‐preserved outcrops of large‐scale depositional slopes with seismic‐scale exposures and tectonically intact stratigraphy are uncommon. Outcrop characterization of smaller‐scale depositional slope systems (i.e. < 700 m of undecompacted shelf‐to‐basin relief) has led to increased understanding of stratigraphic packaging of prograding slopes. Detailed stacking patterns of facies and sedimentary body architecture for larger‐scale slope systems, however, remain understudied. The Cretaceous Tres Pasos Formation of the Magallanes Basin, southern Chile, presents a unique opportunity to evaluate the stratigraphic evolution of such a slope system from an outcrop perspective. Inherited tectonic relief from a precursor oceanic basin phase created shelf‐to‐basin bathymetry comparable with continental margin systems (~1000 m). Sedimentological and architectural data from the Tres Pasos Formation at Cerro Divisadero reveal a record of continental margin‐scale depositional slope progradation and aggradation. Slope progradation is manifested as a vertical pattern exhibiting increasing amounts of sediment bypass upwards, which is interpreted as reflecting increasing gradient conditions. The well‐exposed, seismic‐scale outcrop is characterized by four 20 to 70 m thick sandstone‐rich successions, separated by mudstone‐rich intervals of comparable thickness (40 to 90 m). Sedimentary body geometry, facies distribution, internal bedding architecture, sandstone richness and degree of amalgamation were analysed in detail across a continuous 2·5 km long transect parallel to depositional dip. Deposition in the lower section (Units 1 and 2) was dominated by poorly channellized to unconfined sand‐laden flows and accumulation of mud‐rich mass transport deposits, which is interpreted as representing a base of slope to lower slope setting. Evidence for channellization and indicators of bypass of coarse‐grained turbidity currents are more common in the upper part of the > 600 m thick succession (Units 3 and 4), which is interpreted as reflecting increased gradient conditions as the system accreted basinward.  相似文献   
22.
The relict Fairmont Hot Springs deposit, formed largely of carbonates, covers an area of 0·5 km2, and is up to 16 m thick. The triangle‐shaped discharge apron, which broadens down‐valley, is divided into a proximal part with beds dipping at <10° and a distal part with beds dipping at 10° to 15°. The deposit is formed of the: (1) Basal Macrophyte; (2) Lower Carbonate; (3) Middle Clastic; (4) Upper Carbonate; and (5) Upper Clastic Sequences. Two charcoal samples embedded in the Lower Carbonate Sequence yielded dates of 8690 ± 90 and 8270 ± 70 cal yr bp , indicating that much of the deposit formed post‐glacially during the Early to Mid‐Holocene. Deposit aggradation ceased in the Mid to Late Holocene when the Fairmont Creek valley was incised. The Lower and Upper Carbonate Sequences, which are the thickest sequences, are composed of nearly equal parts of travertine (abiotic) and tufa (biotic), with feather dendrite travertine, radiating dendrite travertine and stromatolite tufa dominating. Competition between calcite precipitation rates and biotic growth rates controlled the distribution of tufa and travertine across the discharge apron. Calcite and biotic growth rates were controlled largely by flow velocity across the apron which, in turn, was controlled by topography and regular fluctuations in spring water discharge volume. During times of high spring discharge, slow sheet flow over the proximal part of the apron promoted stromatolite growth, whereas fast, turbulent flow on the distal part of the apron induced rapid feather dendrite formation. During times of low spring discharge, quiescent, shallow evaporative pools, conducive to radiating dendrite formation, formed on the proximal part of the apron, whereas slow flow on the distal part promoted stromatolite growth. Facies with high calcite supersaturation experienced rapid abiotic dendrite growth that precluded most biotic growth.  相似文献   
23.
24.
25.
The Chatham Islands, at the eastern end of the Chatham Rise in the South‐west Pacific, are the emergent part of a Late Cretaceous to Cenozoic stratovolcano complex that is variably covered with limestones and fossiliferous tuffs. Most of these deposits accumulated in relatively shallow, high‐energy, tide‐influenced palaeoenvironments with deposition punctuated by periods of deeper‐water pelagic accumulation. Carbonate components in these neritic deposits are biogenic and dominated by molluscs and bryozoans – a heterozoan assemblage. The widespread Middle to Late Eocene Matanginui Limestone contains local photozoan elements such as large benthonic foraminifera (especially Asterocyclina) and calcareous green algae, reflecting the general Palaeogene sub‐tropical oceanographic setting. More localized Late Eocene to Oligocene deposits (Te One Limestone) as well as Pliocene carbonates (Onoua Limestone) are, however, wholly heterozoan and confirm a generally cooler‐water oceanographic setting, similar to today. Early sea floor diagenesis is interpreted to have removed most aragonite components (infaunal bivalves and epifaunal gastropods). Lack of aragonite resulted in the absence of intergranular calcite cementation during subaerial exposure, such that most carbonates are friable or unlithified. Cementation is, however, present at nodular hardground–firmground caps to metre‐scale cycles. Such cements are microcrystalline or micrometre‐thick isopachous circumgranular rinds with insufficient definitive attributes to pinpoint their environment of formation. The overall palaeoenvironment of deposition is interpreted as mesotrophic, resulting in part from upwelling about the Chatham volcanic massif and in part from nutrient element delivery from the adjacent volcanic terrane and coeval volcanism. Biotic diversity in tuffs is two to three times that in limestones, supporting the notion of especially high nutrient availability during periods of volcanism. These mid‐latitude deposits are strikingly different from their low‐latitude, tropical, photozoan counterparts in the volcanic island–coral reef ecosystem. Ground water seepage and fluvial runoff attenuate coral growth and promote microbial carbonate precipitation in these warm‐water settings. In contrast, nutrients from the same sources feed the system in the Chatham Islands cool‐water setting, promoting active heterozoan carbonate sedimentation.  相似文献   
26.
Coarse‐grained deep‐water strata of the Cerro Toro Formation in the Cordillera Manuel Señoret, southern Chile, represent the deposits of a major channel belt (4 to 8 km wide by >100 km long) that occupied the foredeep of the Magallanes basin during the Late Cretaceous. Channel belt deposits comprise a ca 400 m thick conglomeratic interval (informally named the ‘Lago Sofia Member’) encased in bathyal fine‐grained units. Facies of the Lago Sofia Member include sandy matrix conglomerate (that show evidence of traction‐dominated deposition and sedimentation from turbulent gravity flows), muddy matrix conglomerate (graded units interpreted as coarse‐grained slurry‐flow deposits) and massive sandstone beds (high‐density turbidity current deposits). Interbedded sandstone and mudstone intervals are present locally, interpreted as inner levée deposits. The channel belt was characterized by a low sinuousity planform architecture, as inferred from outcrop mapping and extensive palaeocurrent measurements. Laterally adjacent to the Lago Sofia Member are interbedded mudstone and sandstone facies derived from gravity flows that spilled over the channel belt margin. A levée interpretation for these fine‐grained units is based on several observations, which include: (i) palaeocurrent measurements that indicate flows diverged (50° to 100°) once they spilled over the confining channel margin; (ii) sandstone beds progressively thin, away from the channel belt margin; (iii) evidence that the eroded channel base was not very well indurated, including a stepped margin and injection of coarse‐grained channel material into surrounding fine‐grained units; and (iv) the presence of sedimentary features common to levées, including slumped units inferring depositional slopes dipping away from the channel margin, lenticular sandstone beds thinning distally from the channel margin, soft sediment deformation and climbing ripples. The tectonic setting and foredeep architecture influenced deposition in the axial channel belt. A significant downstream constriction of the channel belt is reflected by a transition from more tabular units to an internal architecture dominated by lenticular beds associated with a substantially increased degree of scour. Differential propagation of the fold‐thrust belt from the west is speculated to have had a major control on basin, and subsequently channel, width. The confining influence of the basin slopes that paralleled the channel belt, as well as the likelihood that numerous conduits fed into the basin along the length of the active fold‐thrust belt to the west, suggest that proximal–distal relationships observed from large channels in passive margin settings are not necessarily applicable to axial channels in elongate basins.  相似文献   
27.
BRIAN JONES 《Sedimentology》1992,39(5):857-876
Caves, fossil mouldic cavities, sinkholes and solution-widened joints are common in the Cayman and Pedro Castle members of the Bluff Formation (Oligocene-Miocene) on Grand Cayman and Cayman Brac because they have been subjected to repeated periods of karst development over the last 30 million years. Many voids contain a diverse array of sediments and/or precipitates derived from marine or terrestrial environs, mineral aerosols, and groundwater. Exogenic sediment was transported to the cavities by oceanic storm waves, transgressive seas, runoff following tropical rain storms and/or in groundwater. At least three periods of deposition were responsible for the occlusion of voids in the Cayman and Pedro Castle members. Voids in the Cayman Member were initially filled or partly filled during the Late Oligocene and Early Miocene. This was terminated with the deposition of the Pedro Castle Member in the Middle Miocene. Subsequent exposure led to further karst development and void-filling sedimentation in both the Cayman and Pedro Castle members. Speleothems are notably absent. The void-filling deposits formed during these two periods, which were predominantly marine in origin, were pervasively dolomitized along with the host rock 2–5 million years ago. The third period of void-filling deposition, after dolomitization of the Bluff Formation, produced limestone, various types of breccia, terra rossa, speleothemic calcite and terrestrial oncoids. Most of these deposits formed since the Sangamon highstand 125 000 years ago. Voids in the present day karst are commonly filled or partly filled with unconsolidated sediments. Study of the Bluff Formation of Grand Cayman and Cayman Brac shows that karst terrains on isolated oceanic islands are characterized by complex successions of void-filling deposits that include speleothems and a variety of sediment types. The heterogenetic nature of these void-filling deposits is related to changes in sea level and climatic conditions through time.  相似文献   
28.
Surface textures of quartz sand grains from several glacial environments at the Feegletscher, Switzerland examined by means of scanning electron microscopy are described. The difference between supraglacial and subglacial material is very slight. At the moment the interpretation of these textures must be done with care until the full statistical relation to environments can be ascertained. This does not necessarily invalidate earlier investigations although it does mean that glacial and extraglacial environments in the vicinity of glaciers are apparently not distinguishable. Examination of surface precipitation features suggests a sequence of events which can be used to help discriminate between different ages of deposits in an area. A similarity between some of the surface debris from moraine samples and those seen in loess and quickclay deposits is also suggested.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号