首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
大气科学   1篇
地球物理   15篇
地质学   6篇
海洋学   1篇
综合类   1篇
自然地理   9篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2010年   3篇
  2009年   5篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1976年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
11.
Erosion of cohesive soils in fluvial environments is dependent on physical, geochemical and biological properties, which govern inter‐particle attraction forces and control detachment rates from stream beds and banks. Most erosion rate models are based on the excess shear stress equation where the soil erodibility coefficient (kd) is multiplied by the difference between the boundary hydraulic shear stress (τb) and the soil critical shear stress (τc). Both kd and τc are a function of soil properties and must be obtained through in situ field or laboratory testing. Many studies have generated predictive relationships for kd and τc derived from various soil properties. These studies typically were conducted in watersheds within a single physiographic region with a common surficial geology and/or investigated a limited number of soil properties, particularly geochemical properties. With widely reported differences in relationships between τc and soil properties, this study investigated differences in predictive relationships for τc among different physiographic provinces in Tennessee, USA. Erodibility parameters were determined in the field using a mini‐jet test device. Among these provinces, statistically four unique clusters were identified from a dataset of 128 observations and these data clusters were used to develop predictive models for τc to identify dominant properties governing erosion. In these clusters, 16 significant physical and geochemical soil properties were identified for τc prediction. Among these soil properties, water content and passing #200 sieve (percentage soil less than 75 μm) were the dominant controlling parameters to predict τc in addition to clay percentage (< 2 μm), bulk density, and soil pore water chemistry. This study suggests that unique relationships exist for physiographic provinces that are likely due to soil physical‐geochemical processes associated with surficial geology that determine minerology of the cohesive soil. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
12.
13.
Surface wave data were initially collected from events of magnitude Ms ≥ 5.0 and shallow or moderate focal depth occurred between 1980 and 2002: 713 of them generated Rayleigh waves and 660 Love waves, which were recorded by 13 broadband digital stations in Eurasia and India. Up to 1,525 source-station Rayleigh waveforms and 1,464 Love wave trains have been processed by frequency-time analysis to obtain group velocities. After inverting the path-averaged group times by means of a damped least-squares approach, we have retrieved location-dependent group velocities on a 2° × 2°-sized grid and constructed Rayleigh- and Love-wave group velocity maps at periods 10.4–105.0 s. Resolution and covariance matrices and the rms group velocity misfit have been computed in order to check the quality of the results. Afterwards, depth-dependent SV- and SH-wave velocity models of the crust and upper mantle are obtained by inversion of local Rayleigh- and Love-wave group velocities using a differential damped least-squares method. The results provide: (a) Rayleigh- and Love-wave group velocities at various periods; (b) SV- and SH-wave differential velocity maps at different depths; (c) sharp images of the subducted lithosphere by velocity cross sections along prefixed profiles; (d) regionalized dispersion curves and velocity-depth models related to the main geological formations. The lithospheric root presents a depth that can be substantiated at ~140 km (Qiangtang Block) and exceptionally at ~180 km in some places (Lhasa Block), and which exhibits laterally varying fast velocity very close to that of some shields that even reaches ~4.8 km/s under the northern Lhasa Block and the Qiangtang Block. Slow-velocity anomalies of 7–10% or more beneath southern Tibet and the eastern edge of the Plateau support the idea of a mechanically weak middle-to-lower crust and the existence of crustal flow in Tibet.  相似文献   
14.
15.
Relative SV and SH wave speeds are generally attributed to radial seismic anisotropy which can be used as the indicator of crust/mantle deformation styles. Surface wave data were initially collected from events of magnitude Ms  5.0 and shallow or moderate focal depth occurring between 1980 and 2002: 713 of them generated Rayleigh waves and 660 Love waves, which were recorded by 13 broadband digital stations in Eurasia and India. Up to 1525 source-station Rayleigh waveforms and 1464 Love wave trains were earlier analysed by multiple filtering to obtain Love- and Rayleigh wave group velocity curves in the broad period range 10–105 s. We have performed tomographic inversion to obtain period-dependent group velocity and further shear wave velocity at 2° × 2°-sized grid-cells of a mesh covering the model region, after averaging azimuthal effects. Horizontally and vertically varying shear-wave velocities are observed, but the models of isotropic seismic velocity in the crust and upper mantle cannot fit simultaneously the inverted group-velocity dispersion curves due to the discrepancy in the transmission velocities of Love and Rayleigh waves, whose likely origin is the existence of radial anisotropy in the continental crust and topmost mantle. The strength of radial anisotropy computed from the Love–Rayleigh discrepancy and its spatial extent beneath the Qinghai-Tibet Plateau are shown as maps of percentage anisotropy at various depths down to 170 km and cross-sections along five profiles of reference. Areas in which radial anisotropy is in excess of 6% are found in the crust and upper mantle underlying most of the plateau, and even up to 10% in some places. The strength and spatial configuration of radial anisotropy seem to indicate the existence of a regime of horizontal compressive forces in the frame of the convergent Himalayan–Tibetan orogen, the laterally variation of the lithospheric rheology and the differential movement as regards the compressive driving forces.  相似文献   
16.
17.
18.
The magnitudes of early instrumentally recorded earthquakes in the Iberian region (1912–1962) have been studied through processing of digitized seismograms of Wiechert seismograph and analysis of macroseismic information. A magnitude system based on instrumental registrations and macroseismic observations has been proposed. It consists of two compatible magnitude formulae depending on the total duration of seismic oscillations and on the maximum ground amplitude/period ratio of surface waves and includes correspondent intensity–magnitude relationships.  相似文献   
19.
The use of parallel computers makes simulation of elastic waves feasible throughout large structures by means of recent advances in domain decomposition methods. We introduce a competitive parallel algorithm for the propagation of elastic waves in complex heterogeneous media using finite-element discretization. This parallel method, called the multiblock method , performs more efficiently than classical domain decomposition techniques based on substructuration, such as the Schur complement technique. It reduces considerably the amount of communication amongst processors because the interface problem between subdomains is solved by taking advantage of Huygens' principle for wave propagation. We provide some numerical examples and detailed studies on the efficiency and performance of the algorithm, proving that it is competitive and less costly, from the computational viewpoint, than algorithms based on the Schur technique.  相似文献   
20.
Almost 5 years after the 26 December 2004 Indian Ocean tragedy, the 10 August 2009 Andaman tsunami demonstrated that accurate forecasting is possible using the tsunami community modeling tool Community Model Interface for Tsunamis (ComMIT). ComMIT is designed for ease of use, and allows dissemination of results to the community while addressing concerns associated with proprietary issues of bathymetry and topography. It uses initial conditions from a precomputed propagation database, has an easy-to-interpret graphical interface, and requires only portable hardware. ComMIT was initially developed for Indian Ocean countries with support from the United Nations Educational, Scientific, and Cultural Organization (UNESCO), the United States Agency for International Development (USAID), and the National Oceanic and Atmospheric Administration (NOAA). To date, more than 60 scientists from 17 countries in the Indian Ocean have been trained and are using it in operational inundation mapping.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号