首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
大气科学   1篇
地球物理   15篇
地质学   6篇
海洋学   1篇
综合类   1篇
自然地理   9篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2010年   3篇
  2009年   5篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1976年   1篇
排序方式: 共有33条查询结果,搜索用时 187 毫秒
21.
Abstract

The motion of clusters of drifters in stratified coastal waters was studied. Wave‐like motion dominated the single‐particle statistics and had length scales larger than the cluster dimensions; consequently it was largely filtered out of motion relative to the cluster centroid. But the stochastic motion causing eddy diffusion seemed to be equally present in both single‐particle motion and motion relative to the cluster centroid. The single‐particle kinetic energy was 10 and 2 times the kinetic energy of motion relative to the centroid in summer and winter, respectively. The relative motion had longer Lagrangian integral time‐scales and smaller Eulerian spatial correlation scales than the single‐particle motion. Integral length scales of relative motion were of 0.1 and 0.2 times the standard deviation of drifter positions about the centroid for summer and winter ensembles, respectively. The y component of ensemble‐averaged relative eddy diffusivity in summer (0.21 m2 s?1) was much larger than that in winter (0.036 m2 s?1) whereas the summer x component (0.066 m2 s?1) was similar to that in winter (0.087 m2 s?1). The dispersion of individual clusters can vary considerably from that expected from the ensemble‐averaged eddy diffusivity. The cluster dispersion was intermittent, with long quiescent periods of gradual cluster deformation and short events causing rapid cluster deformation. In quiescent periods the centroid motion and velocity gradients were consistent with the kinematics of internal waves.  相似文献   
22.
b
A method based on the coda attenuation law: Q = Q 0( f/f 0)v leads to the determination of the lateral variation of coda- Q in the southern part of the Iberian Peninsula using seismograms belonging to the seismological network of the Cartuja Observatory, located in Granada. The lateral variation of Q 0 ( Q value corresponding to a reference frequency f 0 of 1 Hz) and its frequency dependence for the 1 to 5 Hz frequency range are, in general, in agreement with coda- Q values for frequencies less than about 1 Hz, previously determined in the region under study.
To determine the coda- Q values analytical functions have been used to fit the magnification curves of the vertical component short-period seismographs belonging to the Cartuja network. The problem is solved by using least-squares techniques and non-linear inversion. The determined coda- Q 0 values and its frequency dependence correlate well with several known geophysical parameters in the southern part of the Iberian Peninsula.  相似文献   
23.
24.
A detailed dispersion analysis of Rayleigh waves generated by local earthquakes and occasionally by blasts that occurred in southern Spain, was undertaken to obtain the shear-wave velocity structure of the region at shallow depth. Our database includes seismograms generated by 35 seismic events that were recorded by 15 single-component short-period stations from 1990 to 1995. All these events have focal depths less than 10 km and body-wave magnitudes between 3.0 and 4.0, and they were all recorded at distances between 40 and 300 km from the epicentre. We analysed a total of 90 source-station Rayleigh-wave paths. The collected data were processed by standard digital filtering techniques to obtain Rayleigh-wave group-velocity dispersion measurements. The path-averaged group velocities vary from 1.12 to 2.25 km/s within the 1.0-6.0 s period interval. Then, using a stochastic inversion approach we obtained 1-D shear-wave velocity–depth models across the study area, which were resolved to a depth of circa 5 km. The inverted shear-wave velocities range approximately between 1.0 and 3.8 km/s with a standard deviation range of 0.05–0.16 km/s, and show significant variations from region to region. These results were combined to produce 3-D images via volumetric modelling and data visualization. We present images that show different shear velocity patterns for the Betic Cordillera. Looking at the velocity distribution at various depths and at vertical sections, we discuss of the study area in terms of subsurface structure and S-wave velocity distribution (low velocity channels, basement depth, etc.) at very shallow depths (0–5 km). Our results characterize the region sufficiently and lead to a correlation of shear-wave velocity with the different geological units features.  相似文献   
25.
26.
—The problems of recovering the seismic information contained in the old seismograms through their digitization and processing by computer methods are discussed. We present the main principles of a simple manual technique for digitization of early seismic records of the Wiechert seismograph. Detrending of the zero-line slope, circular arc removal, smoothing and interpolation treatment of the digital data are made. The accuracy of the digitizing process is assessed and its reliability is tested by a comparison with automatically obtained digital data and their spectral amplitudes. The deconvolution of the seismograph response has allowed us to obtain the time variation of ground motion which is then contrasted with direct measurements of ground motion displacement amplitudes given in the old-time bulletins. We have created a digital database for historical earthquakes which occurred in the Iberian area during the period 1912–1940 and recorded by the Wiechert seismograph at the Geophysical Observatory of Toledo, Spain. It contains the following output data the digitized original records; the geometrically corrected and interpolated data; the time variation of ground motion; maximum amplitudes and corresponding periods; total duration of the seismic oscillations and amplitude spectra. We carry out magnitude estimates and give formulae for magnitude classification based on the signal duration and on the maximum ground displacement amplitude. We also perform seismic moment determinations by spectral analysis of waveforms and propose a new seismic moment-magnitude relation.  相似文献   
27.
Comparison of calculated grain sizes with those found in a part of the shoaling zone of south western Lake Michigan reveals that existing quantitative expressions yield sizes which are much larger than those of the natural sediments, but that many aspects of the pattern of size distribution are predictable. An empirical and a theoretical expression were each used to calculate grain sizes in equilibrium with several different wave states for the measured bathymetry. For each wave state, the theoretical equation yields sizes which are closer to those found in the field over most of the shoaling zone, but sizes predicted by each of the two equations approach each other as the shore is approached and natural slopes increase toward the slope used in formulating the empirical expression. Grain-size trends predicted by the calculations include coarsening toward shore and to the south near shore. The calculations with the theoretical expression reveal more detail and predict an anomalously coarse area in the deeper part of the field area and elongate areas of fine sediments close to shore. Some support for the existence of these areas was found in the field.  相似文献   
28.
Spain is a low-to-moderate seismicity area with relatively low seismic hazard. However, several strong shallow earthquakes have shaken the country causing casualties and extensive damage. Regional seismicity is monitored and surveyed by means of the Spanish National Seismic Network, maintenance and control of which are entrusted to the Instituto Geográfico Nacional. This array currently comprises 120 seismic stations distributed throughout Spanish territory (mainland and islands). Basically, we are interested in checking the noise conditions, reliability, and seismic detection capability of the Spanish network by analyzing the background noise level affecting the array stations, errors in hypocentral location, and detection threshold, which provides knowledge about network performance. It also enables testing of the suitability of the velocity model used in the routine process of earthquake location. To perform this study we use a method that relies on P and S wave travel times, which are computed by simulation of seismic rays from virtual seismic sources placed at the nodes of a regular grid covering the study area. Given the characteristics of the seismicity of Spain, we drew maps for M L magnitudes 2.0, 2.5, and 3.0, at a focal depth of 10 km and a confidence level 95 %. The results relate to the number of stations involved in the hypocentral location process, how these stations are distributed spatially, and the uncertainties of focal data (errors in origin time, longitude, latitude, and depth). To assess the extent to which principal seismogenic areas are well monitored by the network, we estimated the average error in the location of a seismic source from the semiaxes of the ellipsoid of confidence by calculating the radius of the equivalent sphere. Finally, the detection threshold was determined as the magnitude of the smallest seismic event detected at least by four stations. The northwest of the peninsula, the Pyrenees, especially the westernmost segment, the Betic Cordillera, and Tenerife Island are the best-monitored zones. Origin time and focal depth are data that are far from being constrained by regional events. The two Iberian areas with moderate seismicity and the highest seismic hazard, the Pyrenees and Betic Cordillera, and the northwestern quadrant of the peninsula, are the areas wherein the focus of an earthquake is determined with an approximate error of 3 km. For M L 2.5 and M L 3.0 this error is common for almost the whole peninsula and the Canary Islands. In general, errors in epicenter latitude and longitude are small for near-surface earthquakes, increasing gradually as the depth increases, but remaining close to 5 km even at a depth of 60 km. The hypocentral depth seems to be well constrained to a depth of 40 km beneath the zones with the highest density of stations, with an error of less than 5 km. The M L magnitude detection threshold of the network is approximately 2.0 for most of Spain and still less, almost 1.0, for the western sector of the Pyrenean region and the Canary Islands.  相似文献   
29.
Computational seismic modelling (CSM) plays an important role in the geophysical industry as an established aid to seismic interpreters. Numerical solution of the elastic wave equations has proved to be a very important tool for geophysicists in both forward modelling and migration. Among the techniques generally used in CSM, we consider the finite-element method (FEM) and investigate its computational and visualization requirements. The CSMFEM program, designed for this purpose and developed on an IBM 3090 computer with vector facility, is described in detail. It constitutes a numerical laboratory for performing computer experiments. Two Newmark type algorithms for time integration are compared with other time integration schemes, and both direct and iterative methods for solving the corresponding large sparse system of linear algebraic equations are analysed. Several numerical experiments to simulate seismic energy propagation through heterogeneous media are performed. Synthetics in the form of common shot gathers, vertical seismic profiles and snapshots are suitably displayed, since with the large amounts of data obtained from CSM research, methods for visualization of the computed results must be developed. The FEM is compared with other numerical tools, such as finite-difference and pseudo-spectral methods.  相似文献   
30.
Imaging of shear-wave velocity structure beneath Iberia   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号