首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   1篇
  国内免费   3篇
测绘学   7篇
大气科学   5篇
地球物理   22篇
地质学   27篇
天文学   9篇
综合类   2篇
自然地理   4篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   8篇
  2017年   10篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   4篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有76条查询结果,搜索用时 23 毫秒
71.
One of the most important water-resources management strategies for arid lands is managed aquifer recharge (MAR). In establishing a MAR scheme, site selection is the prime prerequisite that can be assisted by geographic information system (GIS) tools. One of the most important uncertainties in the site-selection process using GIS is finite ranges or intervals resulting from data classification. In order to reduce these uncertainties, a novel method has been developed involving the integration of multi-criteria decision making (MCDM), GIS, and a fuzzy inference system (FIS). The Shemil-Ashkara plain in the Hormozgan Province of Iran was selected as the case study; slope, geology, groundwater depth, potential for runoff, land use, and groundwater electrical conductivity have been considered as site-selection factors. By defining fuzzy membership functions for the input layers and the output layer, and by constructing fuzzy rules, a FIS has been developed. Comparison of the results produced by the proposed method and the traditional simple additive weighted (SAW) method shows that the proposed method yields more precise results. In conclusion, fuzzy-set theory can be an effective method to overcome associated uncertainties in classification of geographic information data.  相似文献   
72.
Lack of accuracy of rainfall-runoff simulation (RRS) remains critical for some applications. Among various sources of uncertainty, precipitation plays a particular role. Rainfall rates as the main input data of RRS are of the first factors controlling the accuracy. In addition to the depth, spatial and temporal distributions of rainfall impact the flood discharge. Most of the previous studies on RRS uncertainty have ignored rainfall spatial distribution, where in large catchments, it is necessary to be modeled explicitly. Karoon III is one most important basin of the Iran because of the Karoon III dam in the outlet. In the present work, effect of spatial correlation of rainfall on HEC-HMS (SMA) continuous RRS uncertainty is evaluated using 2variate copula (2copula). Monte Carlo simulation (MCS) approach was used to consider the rainfall spatial dependence. To reduce the computational expense, sampling efficiency and convergence for MCS, Latin hypercube sampling (LHS) was used. Copula functions consider wide range of marginal probability distribution functions (PDFs), eliminating limits of regular join PDFs. For this aim, two scenarios were investigated. In the first scenario, sub-basin rainfall was considered independent, and in the second scenario, 2copula was adopted to model spatial correlation of rainfall. Dimensionless rainfall depths were calculated for each sub-basin, and the PDFs were determined. The generated random dimensionless rainfalls were reweighted and multiplied by watershed’s mean rainfall value. Stochastic Climate Library was used to generate continuous daily rainfalls. Sampling from dimensionless rainfalls using LHS algorithm, 100 runs of calibrated model-simulated 100 flows for each day following MCS, and 80 % certainty bound was calculated. Results showed that considering dependence decreased 18 % of the maximum uncertainty bound width, so the methodology could be recommended for decreasing predicted runoff error.  相似文献   
73.
Droughts are complex natural hazards that, to a varying degree, affect some parts of the world every year. The range of drought impacts is related to drought occurring in different stages of the hydrological cycle and usually different types of droughts such as meteorological, agricultural, hydrological, and socio-economical are the most distinguished types. Hydrological drought includes streamflow and groundwater droughts. In this paper, streamflow drought was analyzed using the method of truncation level (at 70 % level) by daily discharges at 54 stations in southwestern Iran. Frequency analysis was carried out for annual maximum series of drought deficit volume and duration. 35 factors such as physiographic, climatic, geologic and vegetation were studied to carry out the regional analysis. According to conclusions of factor analysis, the six most effective factors include watershed area, the sum rain from December to February, the percentage of area with NDVI <0.1, the percentage of convex area, drainage density and the minimum of watershed elevation, explained 89.2 % of variance. The homogenous regions were determined by cluster analysis and discriminate function analysis. The suitable multivariate regression models were ascertained and evaluated for hydrological drought deficit volume with 2 years return period. The significance level of models was 0.01. The conclusion showed that the watershed area is the most effective factor that has a high correlation with drought deficit volume. Moreover, drought duration was not a suitable index for regional analysis.  相似文献   
74.
Recently, water and soil resource competition and environmental degradation due to inadequate management practices have been increased and pose difficult problems for resource managers. Numerous watershed practices currently being implemented for runoff storage and flood control purposes have improved hydrologic conditions in watersheds and enhanced the establishment of riparian vegetation. The assessment of proposed management options increases management efficiency. The purpose of this study is to assess the impact of watershed managements on runoff storage and peak flow, and determine the land use and cover dynamics that it has induced in Gav-Darreh watershed, Kurdistan, Iran. The watershed area is 6.27 km2 which has been subjected to non-structural and structural measures. The implemented management practices and its impact on land use and cover were assessed by integrating field observation and geographic information systems (GIS). The data were used to derive the volume of retained water and determine reduction in peak flow. The hydrology of the watershed was modeled using the Hydrologic Engineering Center–Hydrologic Modeling System (HEC–HMS) model, and watershed changes were quantified through field work. Actual storms were used to calibrate and validate HEC–HMS rainfall–runoff model. The calibrated HEC–HMS model was used to simulate pre- and post-management conditions in the watershed. The results derived from field observation and HEC–HMS model showed that the practices had significant impacts on the runoff storage and peak flow reduction.  相似文献   
75.
A cloud method for generating percentile engineering demand parameter versus intensity measure(EDP-IM) curves of a structure subjected to a set of synthetic ground motions is presented. To this end, an ensemble of synthetic ground motions based on available real ones is generated. This is done by using attenuation relationships, duration and suitable Gutenberg-Richter relations attributed to the considered seismic hazard at a given site by estimating a suitable distribution of magnitude and site to source distance. The study aims to clarify the significance of the duration and frequency content on the seismic performance of structures, which were not considered in developing percentile incremental dynamic analysis(IDA) curves. The collapse probabilities of two steel moment-resisting frames with different ductility levels generated by IDA and the proposed cloud method are compared at different intensity levels. When compared with conventional IDA, the suggested cloud analysis(SCA) methodology with the same run number of dynamic analyses was able to develop response hazard curves that were more consistent with site-specific seismic hazards. Eliminating the need to find many real records by generating synthetic records consistent with site-specific seismic hazards from a few available recorded ground motions is another advantage of using this scheme over the IDA method..  相似文献   
76.
Permafrost-induced deformation of ground features is threating infrastructure in northern communities. An understanding of permafrost distribution is therefore critical for sustainable adaptation planning and infrastructure maintenance. Considering the large area underlain by permafrost in the Yukon Territory, there is a need for baseline information to characterize the permafrost in this region. In this study, the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique was used to identify areas of ground movement likely caused by changes in permafrost. The DInSAR technique was applied to a series of repeat-pass C-band RADARSAT-2 observations collected in 2015 over the Village of Mayo, in central Yukon Territory, Canada. The conventional DInSAR technique demonstrated that ground deformation could be detected in this area, but the resulting deformation maps contained errors due to a loss of coherence from changes in vegetation and atmospheric phase delay. To address these limitations, the Small BAseline Subset (SBAS) InSAR technique was applied to reduce phase error, thus improving the deformation maps. To understand the relationship between the deformation maps and land cover types, an object-based Random Forest classification was developed to classify the study area into different land cover types. Integration of the InSAR results and the classification map revealed that the built-up class (e.g., airport) was affected by subsidence on the order of ?2 to ?4 cm. The spatial extent of the surface displacement map obtained using the SBAS InSAR technique was then correlated with the surficial geology map. This revealed that much of the main infrastructure in the Village of Mayo is underlain by interbedded glaciofluvial and glaciolacustrine sediments, the latter of which caused the most damage to human made structures. This study provides a method for permafrost monitoring that builds upon the synergistic use of the SBAS InSAR technique, object-based image analysis, and surficial geology data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号