首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   5篇
测绘学   7篇
大气科学   5篇
地球物理   35篇
地质学   33篇
海洋学   5篇
天文学   6篇
自然地理   6篇
  2021年   1篇
  2019年   7篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   9篇
  2012年   10篇
  2011年   4篇
  2010年   3篇
  2009年   6篇
  2008年   4篇
  2007年   4篇
  2006年   7篇
  2005年   1篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
91.
Steady flow to a well near a stream with a leaky bed   总被引:2,自引:0,他引:2  
Bakker M  Anderson EI 《Ground water》2003,41(6):833-840
We present an explicit analytic solution for steady, two-dimensional ground water flow to a well near a leaky streambed that penetrates the aquifer partially. Leakage from the stream is approximated as occurring along the centerline of the stream. The problem domain is infinite and pumping on one side of the stream induces flow on the other side. The solution includes the effects of uniform flow in the far field and a sloping hydraulic head in the stream. We use the solution to investigate the interaction between ground water and surface water in the stream, the effects of pumping on the opposite side of the stream, and the effects of the leaky streambed on the capture zone envelope of the well. We develop a relationship between parameters such that the pumping well will not capture water from the stream, or from the opposite side of the stream. When the discharge of the well is large enough to capture water from the stream, the shape of the capture zone envelope depends on flow conditions on the side of the stream opposite the well.  相似文献   
92.
Numerical experiments with steady-state ground water flow models show that spiraling flow lines occur in layered aquifers that have different anisotropic horizontal hydraulic conductivities in adjacent layers. Bundles of such flow lines turning in the same direction can be referred to as ground water whirls. An anisotropic layered block in a field of uniform horizontal flow results in one or more whirls with their axes in the uniform flow direction. The number of whirls depends on the number of interfaces between layers with different anisotropic properties. For flow to a well in an aquifer consisting of two anisotropic layers, with perpendicular major principal directions, whirls are found to occur in quadrants that are bounded by the principal directions of the hydraulic conductivity. The combined effect of flow to a well and a layered anisotropy implies that a single well in a system with a single anisotropic layer within an otherwise isotropic aquifer causes eight whirls. All adjacent whirls rotate in opposite directions.  相似文献   
93.
Steady interface flow in heterogeneous aquifer systems is simulated with single‐density groundwater codes by using transformed values for the hydraulic conductivity and thickness of the aquifers and aquitards. For example, unconfined interface flow may be simulated with a transformed model by setting the base of the aquifer to sea level and by multiplying the hydraulic conductivity with 41 (for sea water density of 1025 kg/m3). Similar transformations are derived for unconfined interface flow with a finite aquifer base and for confined multi‐aquifer interface flow. The head and flow distribution are identical in the transformed and original model domains. The location of the interface is obtained through application of the Ghyben‐Herzberg formula. The transformed problem may be solved with a single‐density code that is able to simulate unconfined flow where the saturated thickness is a linear function of the head and, depending on the boundary conditions, the code needs to be able to simulate dry cells where the saturated thickness is zero. For multi‐aquifer interface flow, an additional requirement is that the code must be able to handle vertical leakage in situations where flow in an aquifer is unconfined while there is also flow in the aquifer directly above it. Specific examples and limitations are discussed for the application of the approach with MODFLOW. Comparisons between exact interface flow solutions and MODFLOW solutions of the transformed model domain show good agreement. The presented approach is an efficient alternative to running transient sea water intrusion models until steady state is reached.  相似文献   
94.
Phase assemblages and temperatures of phase changes provide important information about the bulk properties of fluid inclusions, and are typically obtained by microthermometry. Inclusions are synthesized in natural quartz containing an aqueous fluid with a composition in the ternary systems of H2O-NaCl2-CaCl2, H2O-NaCl-MgCl2, and H2O-CaCl2-MgCl2. This study reveals that these fluid inclusions may behave highly unpredictably at low temperatures due to the formation of metastable phase assemblages. Eutectic temperatures cannot be detected in most of the fluid inclusions containing these ternary systems. Nucleation of a variety of solid ice and salt-hydrate phases in single fluid inclusions is often partly inhibited. Raman spectroscopy at low temperatures provides an important tool for interpreting and understanding microthermometric experiments, and visualizing stable and metastable phase assemblages. Final dissolution temperatures of ice, salt-hydrates, and salt must be treated with care, as they can only be interpreted by purely empirical or thermodynamic models at stable conditions.  相似文献   
95.
96.
97.
Time series analysis is a data-driven approach to analyze time series of heads measured in an observation well. Time series models are commonly much simpler and give much better fits than regular groundwater models. Time series analysis with response functions gives insight into why heads vary, while such insight is difficult to gain with black box models out of the artificial intelligence world. An important application is to quantify the contributions to the head variation of different stresses on the aquifer, such as rainfall and evaporation, pumping, and surface water levels. Time series analysis may be applied to answer many groundwater questions without the need for a regular groundwater model, such as what is the drawdown caused by a pumping station? Or, how long will it take before groundwater levels recover after a period of drought? Even when a regular groundwater model is needed to solve a groundwater problem, time series analysis can be of great value. It can be used to clean up the data, identify the major stresses on the aquifer, determine the most important processes that affect flow in the aquifer, and give an indication of the fit that can be expected. In addition, it can be used to determine calibration targets for steady-state models, and it can provide several alternative calibration methods for transient models. In summary, the overarching message of this paper is that it would be wise to do time series analysis for any application that uses measured groundwater heads.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号