首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   822篇
  免费   29篇
  国内免费   7篇
测绘学   22篇
大气科学   52篇
地球物理   180篇
地质学   318篇
海洋学   76篇
天文学   124篇
综合类   2篇
自然地理   84篇
  2023年   3篇
  2020年   12篇
  2019年   14篇
  2018年   22篇
  2017年   16篇
  2016年   26篇
  2015年   29篇
  2014年   22篇
  2013年   40篇
  2012年   34篇
  2011年   48篇
  2010年   46篇
  2009年   59篇
  2008年   51篇
  2007年   45篇
  2006年   26篇
  2005年   36篇
  2004年   33篇
  2003年   29篇
  2002年   22篇
  2001年   21篇
  2000年   11篇
  1999年   14篇
  1998年   18篇
  1997年   4篇
  1996年   11篇
  1995年   11篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   4篇
  1988年   8篇
  1987年   7篇
  1986年   6篇
  1985年   8篇
  1984年   17篇
  1983年   9篇
  1982年   10篇
  1981年   7篇
  1980年   7篇
  1979年   7篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
  1973年   5篇
  1971年   2篇
排序方式: 共有858条查询结果,搜索用时 31 毫秒
71.
Mid-infrared limb spectra in the range 600-1400 cm−1 taken with the Composite InfraRed Spectrometer (CIRS) on-board the Cassini spacecraft were used to determine vertical profiles of HCN, HC3N, C2H2, and temperature in Titan's atmosphere. Both high (0.5 cm−1) and low (13.5 cm−1) spectral resolution data were used. The 0.5 cm−1 data gave profiles at four latitudes and the 13.5 cm−1 data gave almost complete latitudinal coverage of the atmosphere. Both datasets were found to be consistent with each other. High temperatures in the upper stratosphere and mesosphere were observed at Titan's northern winter pole and were attributed to adiabatic heating in the subsiding branch of a meridional circulation cell. On the other hand, the lower stratosphere was much colder in the north than at the equator, which can be explained by the lack of solar radiation and increased IR emission from volatile enriched air. HC3N had a vertical profile consistent with previous ground based observations at southern and equatorial latitudes, but was massively enriched near the north pole. This can also be explained in terms of subsidence at the winter pole. A boundary observed at 60° N between enriched and un-enriched air is consistent with a confining polar vortex at 60° N and HC3N's short lifetime. In the far north, layers were observed in the HC3N profile that were reminiscent of haze layers observed by Cassini's imaging cameras. HCN was also enriched over the north pole, which gives further evidence for subsidence. However, the atmospheric cross section obtained from 13.5 cm−1 data indicated a HCN enriched layer at 200-250 km, extending into the southern hemisphere. This could be interpreted as advection of polar enriched air towards the south by a meridional circulation cell. This is observed for HCN but not for HC3N due to HCN's longer photochemical lifetime. C2H2 appears to have a uniform abundance with altitude and is not significantly enriched in the north. This is consistent with observations from previous CIRS analysis that show increased abundances of nitriles and hydrocarbons but not C2H2 towards the north pole.  相似文献   
72.
New U–Pb detrital zircon ages from Triassic metasandstones of the Torlesse Terrane in New Zealand are compared with 40Ar/39Ar muscovite data and together, reveal four main source components: (i) major, Triassic–Permian (210–270 Myr old) and (ii) minor, Permian–Carboniferous (280–350 Myr old) granitoids (recorded in zircon and muscovite data); (iii) minor, early middle Palaeozoic, metamorphic rocks, recorded mainly by muscovite, 420–460 Myr old, and (iv) minor, Late Precambrian–Cambrian igneous and metamorphic complexes, 480–570 Myr old, recorded by zircon only. There are also Proterozoic zircon ages with no clear grouping (580–1270 Myr). The relative absence of late Palaeozoic (350–420 Myr old) components excludes granitoid terranes in the southern Lachlan Fold Belt (Australia) and its continuation into North Victoria Land (East Antarctica) and Marie Byrd Land (West Antarctica) as a potential source for the Torlesse. The age data are compatible with derivation from granitoid terranes of the northern New England Orogen (and hinterland) in NE Australia. This confirms that the Torlesse Terrane of New Zealand is a suspect terrane, that probably originated at the NE Australian, Permian–Triassic, Gondwanaland margin and then (200–120 Ma) moved 2500 km southwards to its present New Zealand position by the Late Cretaceous (90 Ma). This sense of movement is analogous to that suggested for Palaeozoic Mesozoic terranes at the North American Pacific margin.  相似文献   
73.
This paper presents the results of a high‐resolution Late‐glacial chironomid stratigraphy from Hawes Water, a small carbonate lake in northern Lancashire. The samples were from a core taken from the terrestrialised margin of the present lake, which represents an intermediate depth between the true littoral and the profundal. The chironomid assemblage showed a high degree of sensitivity to both broad‐scale and short‐term temperature changes. Comparison with an existing proxy temperature record (δ18O) for the site confirmed the presence of four temperature inversions within the Late‐glacial Interstadial. A mean July air temperature inference model, derived from acid, soft‐water lakes in Norway and Svalbard, was applied to the data. Despite the absence of carbonate lakes within the Norwegian training set, there was a close similarity between trends in estimated July air temperature and the δ18O trace, with a particularly strong correspondence in the periods of clay deposition. This suggests that this model is highly robust. The inferred maximum Interstadial temperature was 13.4°C, dropping initially to 7.5°C in the Loch Lomond Stadial. Temperatures reach a maximum of nearly 10°C in this period, cool for a short period before rising rapidly to 13.2°C at the start of the Holocene. These temperatures are similar to but slightly higher than those estimated for Whitrig Bog, southeast Scotland, and lower than those inferred from coleopteran‐based models for sites in South Wales. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
74.
We present a study of the long-term evolution of the cloud of aerosols produced in the atmosphere of Jupiter by the impact of an object on 19 July 2009 (Sánchez-Lavega, A. et al. [2010]. Astrophys. J. 715, L155-L159). The work is based on images obtained during 5 months from the impact to 31 December 2009 taken in visible continuum wavelengths and from 20 July 2009 to 28 May 2010 taken in near-infrared deep hydrogen-methane absorption bands at 2.1-2.3 μm. The impact cloud expanded zonally from ∼5000 km (July 19) to 225,000 km (29 October, about 180° in longitude), remaining meridionally localized within a latitude band from 53.5°S to 61.5°S planetographic latitude. During the first two months after its formation the site showed heterogeneous structure with 500-1000 km sized embedded spots. Later the reflectivity of the debris field became more homogeneous due to clump mergers. The cloud was mainly dispersed in longitude by the dominant zonal winds and their meridional shear, during the initial stages, localized motions may have been induced by thermal perturbation caused by the impact’s energy deposition. The tracking of individual spots within the impact cloud shows that the westward jet at 56.5°S latitude increases its eastward velocity with altitude above the tropopause by 5-10 m s−1. The corresponding vertical wind shear is low, about 1 m s−1 per scale height in agreement with previous thermal wind estimations. We found evidence for discrete localized meridional motions with speeds of 1-2 m s−1. Two numerical models are used to simulate the observed cloud dispersion. One is a pure advection of the aerosols by the winds and their shears. The other uses the EPIC code, a nonlinear calculation of the evolution of the potential vorticity field generated by a heat pulse that simulates the impact. Both models reproduce the observed global structure of the cloud and the dominant zonal dispersion of the aerosols, but not the details of the cloud morphology. The reflectivity of the impact cloud decreased exponentially with a characteristic timescale of 15 days; we can explain this behavior with a radiative transfer model of the cloud optical depth coupled to an advection model of the cloud dispersion by the wind shears. The expected sedimentation time in the stratosphere (altitude levels 5-100 mbar) for the small aerosol particles forming the cloud is 45-200 days, thus aerosols were removed vertically over the long term following their zonal dispersion. No evidence of the cloud was detected 10 months after the impact.  相似文献   
75.
Mid-infrared 7-20 μm imaging of Jupiter from ESO’s Very Large Telescope (VLT/VISIR) demonstrate that the increased albedo of Jupiter’s South Equatorial Belt (SEB) during the ‘fade’ (whitening) event of 2009-2010 was correlated with changes to atmospheric temperature and aerosol opacity. The opacity of the tropospheric condensation cloud deck at pressures less than 800 mbar increased by 80% between May 2008 and July 2010, making the SEB (7-17°S) as opaque in the thermal infrared as the adjacent equatorial zone. After the cessation of discrete convective activity within the SEB in May 2009, a cool band of high aerosol opacity (the SEB zone at 11-15°S) was observed separating the cloud-free northern and southern SEB components. The cooling of the SEBZ (with peak-to-peak contrasts of 1.0 ± 0.5 K), as well as the increased aerosol opacity at 4.8 and 8.6 μm, preceded the visible whitening of the belt by several months. A chain of five warm, cloud-free ‘brown barges’ (subsiding airmasses) were observed regularly in the SEB between June 2009 and June 2010, by which time they too had been obscured by the enhanced aerosol opacity of the SEB, although the underlying warm circulation was still present in July 2010. Upper tropospheric temperatures (150-300 mbar) remained largely unchanged during the fade, but the cool SEBZ formation was detected at deeper levels (p > 300 mbar) within the convectively-unstable region of the troposphere. The SEBZ formation caused the meridional temperature gradient of the SEB to decrease between 2008 and 2010, reducing the vertical thermal windshear on the zonal jets bounding the SEB. The southern SEB had fully faded by July 2010 and was characterised by short-wave undulations at 19-20°S. The northern SEB persisted as a narrow grey lane of cloud-free conditions throughout the fade process.The cool temperatures and enhanced aerosol opacity of the SEBZ after July 2009 are consistent with an upward flux of volatiles (e.g., ammonia-laden air) and enhanced condensation, obscuring the blue-absorbing chromophore and whitening the SEB by April 2010. These changes occurred within cloud decks in the convective troposphere, and not in the radiatively-controlled upper troposphere. NH3 ice coatings on aerosols at p < 800 mbar are plausible sources of the suppressed 4.8 and 8.6-μm emission, although differences in the spatial distribution of opacity at these two wavelengths suggest that enhanced attenuation by a deeper cloud (p > 800 mbar) also occurred during the fade. Revival of the dark SEB coloration in the coming months will ultimately require sublimation of these ices by subsidence and warming of volatile-depleted air.  相似文献   
76.
Evidence of recent gully activity on Mars has been reported based on the formation of new light toned deposits within the past decade, the origin of which remains controversial. Analogous recent light toned gully features have formed by liquid water activity in the Atacama Desert on Earth. These terrestrial deposits leave no mineralogical trace of water activity but rather show an albedo difference due to particle size sorting within a fine-grained mudflow. Therefore, spectral differences indicating varying mineralogy between a recent gully deposit and the surrounding terrain may not be the most relevant criteria for detecting water flow in arid environments. Instead, variation in particle size between the deposit and surrounding terrain is a possible discriminator to identify a water-based flow. We show that the Atacama deposit is similar to the observed Mars gully deposits, and both are consistent with liquid water activity. The light-toned Mars gully deposits could have formed from dry debris flows, but a liquid water origin cannot be ruled out because not all liquid water flows leave hydrated minerals behind on the surface. Therefore, the Mars deposits could be remnant mudflows that formed on Mars within the last decade.  相似文献   
77.
We apply an automated cloud feature tracking algorithm to estimate eddy momentum fluxes in Saturn's southern hemisphere from Cassini Imaging Science Subsystem near-infrared continuum image sequences. Voyager Saturn manually tracked images had suggested no conversion of eddy to mean flow kinetic energy, but this was based on a small sample of <1000 wind vectors. The automated procedure we use for the Cassini data produces an order of magnitude more usable wind vectors with relatively unbiased sampling. Automated tracking is successful in and around the westward jet latitudes on Saturn but not in the vicinity of most eastward jets, where the linearity and non-discrete nature of cloud features produces ambiguous results. For the regions we are able to track, we find peak eddy fluxes and a clear positive correlation between eddy momentum fluxes and meridional shear of the mean zonal wind, implying that eddies supply momentum to eastward jets and remove momentum from westward jets at a rate . The behavior we observe is similar to that seen on Jupiter, though with smaller eddy-mean kinetic energy conversion rates per unit mass of atmosphere (). We also use the appearance and rapid evolution of small bright features at continuum wavelengths, in combination with evidence from weak methane band images where possible, to diagnose the occurrence of moist convective storms on Saturn. Areal expansion rates imply updraft speeds of over the convective anvil cloud area. As on Jupiter, convection preferentially occurs in cyclonic shear regions on Saturn, but unlike Jupiter, convection is also observed in eastward jet regions. With one possible exception, the large eddy fluxes seen in the cyclonic shear latitudes do not seem to be associated with convective events.  相似文献   
78.
The Polochic and Motagua faults define the active plate boundary between the North American and Caribbean plates in central Guatemala. A splay of the Polochic Fault traverses the rapidly growing city of San Miguel Uspantán that is periodically affected by destructive earthquakes. This fault splay was located using a 2D electrical resistivity tomography (ERT) survey that also characterized the fault damage zone and evaluated the thickness and nature of recent deposits upon which most of the city is built. ERT images show the fault as a ~50 m wide, near-vertical low-resistivity anomaly, bounded within a few meters by high resistivity anomalies. Forward modeling reproduces the key aspects of the observed electrical resistivity data with remarkable fidelity thus defining the overall location, geometry, and internal structure of the fault zone as well as the affected lithologies. Our results indicate that the city is constructed on a ~20 m thick surficial layer consisting of poorly consolidated, highly porous, water-logged pumice. This soft layer is likely to amplify seismic waves and to liquefy upon moderate to strong ground shaking. The electrical conductivity as well as the major element chemistry of the groundwater provides evidence to suggest that the local aquifer might, at least in part, be fed by water rising along the fault. Therefore, the potential threat posed by this fault splay may not be limited to its seismic activity per se, but could be compounded its potential propensity to enhance seismic site effects by injecting water into the soft surficial sediments. The results of this study provide the basis for a rigorous analysis of seismic hazard and sustainable development of San Miguel Uspantán and illustrate the potential of ERT surveying for paleoseismic studies.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号