首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   639篇
  免费   22篇
  国内免费   4篇
测绘学   16篇
大气科学   44篇
地球物理   154篇
地质学   247篇
海洋学   64篇
天文学   63篇
综合类   2篇
自然地理   75篇
  2024年   2篇
  2023年   3篇
  2021年   2篇
  2020年   12篇
  2019年   10篇
  2018年   21篇
  2017年   15篇
  2016年   21篇
  2015年   18篇
  2014年   19篇
  2013年   27篇
  2012年   23篇
  2011年   33篇
  2010年   37篇
  2009年   49篇
  2008年   41篇
  2007年   35篇
  2006年   19篇
  2005年   33篇
  2004年   25篇
  2003年   23篇
  2002年   21篇
  2001年   14篇
  2000年   7篇
  1999年   9篇
  1998年   17篇
  1997年   4篇
  1996年   8篇
  1995年   7篇
  1994年   6篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1985年   7篇
  1984年   15篇
  1983年   6篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   4篇
排序方式: 共有665条查询结果,搜索用时 171 毫秒
121.
Solution 31P nuclear magnetic resonance (NMR) spectroscopy has recently been used to characterize phosphorus species within marine particles. However, the effects of sample collection, storage and preparation have not been thoroughly examined. In this study, samples of settling particulates collected from a 1200-m sediment trap located in Monterey Bay, California, were subjected to various storage options (i.e., no storage, refrigeration, freezing, and oven-drying and grinding) prior to extraction for solution 31P-NMR spectroscopy. Freezing, refrigerating and drying samples for periods of up to 6 months prior to extraction with 0.25 M NaOH + 0.05 M Na2EDTA increased the concentration of extracted P by an average of 16% relative to samples extracted without storage. Pre-extraction storage also introduced some minor changes in P speciation, by increasing the percentage of orthophosphate by up to 15% and decreasing the percentage of pyrophosphate by up to 5%, relative to the abundances of these P species in samples extracted without storage. Drying caused the biggest changes in speciation, specifically decreasing more extensively the relative percentage of pyrophosphate compared to other treatments. Nevertheless, observed changes in speciation due to sample storage within a specific sample were small relative to differences observed among samples collected sequentially in the same area, or reported differences among samples collected at different locations. Samples were also analyzed by solid-state 31P-NMR spectroscopy before and after extraction, to examine extraction-related changes in P speciation. Comparison of solution with solid-state 31P NMR indicates that extraction with NaOH–EDTA removes the majority of organic esters, but only a variable portion of phosphonates (39–67%). In addition, there was preferential extraction of Ca-associated phosphate over Mg-, Fe- and Al-associated phosphate. Solution 31P NMR enables much higher resolution of P species within samples, particularly when it is important to speciate orthophosphate monoesters and diesters, or if polyphosphates are present. However, combining solid-state 31P NMR with solution 31P NMR spectroscopy for marine particles should be conducted when examining inorganic P speciation and the abundance of phosphonates.  相似文献   
122.
After reviewing the inverse method, we apply it to deducing the general circulation of the North Atlantic ocean. We argue that the method is purely classical in nature, being nothing more than a mathematical statement of the principles upon which nearly all previous circulation schemes have been based. The ‘smoothed’ solution is shown to represent the components of the flow field that are determinable independently of the initial reference level. We then produce two circulation schemes based upon two different initial reference levels — 2000 decibars and the bottom — called North Atlantic-1A and North Atlantic-1B respectively. The models share many features in common and are strikingly similar to several previous schemes, most notably those of Jacobsen and Defant in the region west of Bermuda. No simple level-of-no-motion emerges in the flow fields; rather the velocity sections exhibit a complex cellular structure. Zonally integrated meridional cells of models and of the uniquely determined components are very similar, showing a poleward movement of warm saline water compensated at depth by a return flow of cold, fresher water. The magnitudes of the implied polar sea overflows and the heat fluxes are in good agreement with previous estimates. Finally, it is argued that neither these model circulations nor any other circulation pattern based upon the existing data can be regarded as actually representing the true time average ocean circulation because the data are aliased in time; the frequency/wavenumber spectrum of the ocean is inadequately known to determine the resulting errors.  相似文献   
123.
124.
A 42-d flow-through experiment was conducted to evaluate the effects of the organo-phosphate pesticide, chlorpyrifos, and microcosm size (small: 144 cm2; large: 400 cm2) on benthic estuarine macroinvertebrate colonization. Nested central and perimeter (outside margin) cores were used to assess animal distribution within microcosms. Fine-grained, organically-rich (approximately 4.0% organic carbon and 20% dry wt) sediments were nominally fortified with chlorpyrifos controls, low (1.0) and high treatments (10.0 μg−1 wet sediment). Large microcosms contained a significantly (p < 0.05) higher average taxa richness (10.9) than small microcosms (8.6) but small microcosms contained a significantly greater average animal density (295.8; numerical abundance adjusted to unit area) than large microcosms (120.5). Density of the polychaete, Neanthes succinea, the amphipod, Corophium acherusicum, and the barnacle, Balanus sp., was significantly greater in small microcosms but density of Ensis minor was significantly greater in large microcosms. In small and large microcosms, respectively, densities averaged significantly greater numbers in perimeter cores (e.g. 203.1 and 75.1) vs central cores (71.9 and 45.4). Average density decreased significantly with increasing chlorpyrifos concentration from controls (326.8), to low (123.8) and high (78.8) treatments. The density decrease was significantly related only to C. acherusicum whose densities decreased from controls (285.8) to low (88.5) and high (43.9) dosed microcosms. Application of an equilibrium partitioning model indicated that density of C. acherusicum was sensitive to an estimated interstitial water concentration of approximately 0.48 μg liter−1. Non-metric multidimensional scaling ordination analyses provided important insights into response patterns not available through ANOVA procedures. A permutation procedure (ANOSIM) detected a significant size effect (p < 0.0001) and a significant effect between controls and low (p < 0.042) and high doses (p < 0.013) but not between low and high chlorpyrifos treatments (p < 0.465). A single species, C. ascherusicum, as in the ANOVA analyses, dominated contributions to community average percent dissimilarity in most combinations of microcosm size and chlorpyrifos treatment effects (range: 8.4–21.9%). Community structure differed significantly in several combinations of microcosm size, core position and chlorpyrifos treatment. Results confirm earlier work that intrinsic design factors influence benthic macroinvertebrate community structure and determine taxa available to pesticide exposure in microcosms.  相似文献   
125.
126.
Laboratory experiments were conducted on the light-induced dissolution of three well defined Fe(III) (hydr)oxide phases (γ-FeOOH, α-FeOOH, and α-Fe2O3) with oxalate as reductant/ligand. Upon irradiation of an aerated γ-FeOOH suspension of pH 3, photooxidation of oxalate and photochemical formation of dissolved Fe(II) occurred according to a 1:1 stoichiometry. This was not observed with aerated α-FeOOH and α-Fe2O3 suspensions of pH 3, where photooxidation of oxalate was not accompanied by formation of appreciable concentrations of dissolved Fe(II). We hypothesize that in aerated α-FeOOH and α-Fe2O3 suspensions, oxidation of surface Fe(II) outcompetes its detachment from the crystal lattice. Also in deaerated suspensions, α-FeOOH and α-Fe2O3 behaved differently from γ-FeOOH with regard to light-induced dissolution. We interpret our results by assuming that light-induced dissolution of α-FeOOH and α-Fe2O3 in deaerated suspensions of pH 3 occurred mainly through Fe(II)-catalyzed thermal dissolution of the solid phases, where Fe(II) was initially formed by photoreductive dissolution and then predominantly via photolysis of dissolved Fe(III) oxalate complexes. With γ-FeOOH, on the other hand, dissolved Fe(II) formation occurred probably mainly through photochemical reductive dissolution under photooxidation of adsorbed oxalate. From our results we conclude that the efficiency of detachment of reduced surface iron is a key parameter of the overall kinetics of photoreductive dissolution of Fe(III) (hydr)oxides in aquatic systems, and that thermodynamically stable phases such as α-FeOOH and α-Fe2O3 are not readily dissolved in the presence of O2, even at low pH-values and in the presence of light and reductants like oxalate. We propose that redox cycling of iron at the surface of crystalline Fe(III) (hydr)oxide phases, i.e. reduction and oxidation of surface iron without transfer into solution, may be an important pathway of transformation of thermodynamically stable atmospheric Fe(III) (hydr)oxides into less stable and thus more soluble phases.  相似文献   
127.
Evidence from over 200 sediment cores, numerous submersible dives, and bottom photographs prove that bioturbation and bioerosion are ongoing processes affecting northeastern U.S. continental slope and rise sedimentation. Evidence of biological activity was found in greater than 95% of the cores examined. Submersible dive observations reveal that the results of biological activity often dominate sea-floor microtopography. Bioturbation can disturb sediments several centimeters deep in a matter of seconds and is in some areas the primary sediment transport mechanism. Many cores with sandy intervals were profoundly disturbed by bioturbation. Biologically camouflaged sand-rich intervals can easily be missed by visual observation.  相似文献   
128.
129.
The upwelling region off northwest Africa is one of the most productive regions in the world ocean. This study details the response of surface‐ and deep‐water environments off Mauritania, northwest Africa, to the rapid climate events of the last deglaciation, especially the Bølling–Allerød (15.5–13.5 ka BP) and Younger Dryas (13.5–11.5 ka BP). A high accumulation rate gravity core GeoB7926‐2, recovered at ~20° N, 18° W, was analysed for the grain size distribution of the terrigenous sediment fraction, the organic carbon content, diatom and benthic foraminifera communities. Humid conditions were observed during the Bølling–Allerød with a high contribution of fluvial sediment input. During the Younger Dryas intensified trade winds caused a larger sediment input of aeolian dust from the Sahara and more intense upwelling with higher primary productivity, as indicated by high diatom concentrations. The abrupt and large increase of organic matter caused low oxygen conditions at the sea floor, reflected by the poor benthic foraminiferal fauna and the dominance of the low‐oxygen‐tolerant foraminiferal species Bulimina exilis. This is surprising since low‐oxygen conditions have not been recorded during modern times at the sea floor in this region, despite present‐day intensive upwelling and high primary productivity. After the Younger Dryas, more humid conditions returned, diatom abundance decreased and B. exilis was replaced by typical deep‐sea species as found in the region today, indicating the return of more oxygenated conditions at the sea floor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号