首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   14篇
  国内免费   3篇
测绘学   5篇
大气科学   24篇
地球物理   46篇
地质学   37篇
海洋学   4篇
天文学   16篇
综合类   1篇
自然地理   13篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2017年   9篇
  2016年   7篇
  2015年   1篇
  2014年   10篇
  2013年   13篇
  2012年   11篇
  2011年   8篇
  2010年   6篇
  2009年   6篇
  2008年   9篇
  2007年   8篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1984年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有146条查询结果,搜索用时 31 毫秒
31.
Investigating the relationships between climate extremes and crop yield can help us understand how unfavourable climatic conditions affect crop production. In this study, two statistical models, multiple linear regression and random forest, were used to identify rainfall extremes indices affecting wheat yield in three different regions of the New South Wales wheat belt. The results show that the random forest model explained 41–67% of the year-to-year yield variation, whereas the multiple linear regression model explained 34–58%. In the two models, 3-month timescale standardized precipitation index of Jun.–Aug. (SPIJJA), Sep.–Nov. (SPISON), and consecutive dry days (CDDs) were identified as the three most important indices which can explain yield variability for most of the wheat belt. Our results indicated that the inter-annual variability of rainfall in winter and spring was largely responsible for wheat yield variation, and pre-growing season rainfall played a secondary role. Frequent shortages of rainfall posed a greater threat to crop growth than excessive rainfall in eastern Australia. We concluded that the comparison between multiple linear regression and machine learning algorithm proposed in the present study would be useful to provide robust prediction of yields and new insights of the effects of various rainfall extremes, when suitable climate and yield datasets are available.  相似文献   
32.
An adapted statistical bias correction method is introduced to incorporate circulation-dependence of the model precipitation bias, and its influence on estimated discharges for the Rhine basin is analyzed for a historical period. The bias correction method is tailored to time scales relevant to flooding events in the basin. Large-scale circulation patterns (CPs) are obtained through Maximum Covariance Analysis using reanalysis sea level pressure and high-resolution precipitation observations. A bias correction using these CPs is applied to winter and summer separately, acknowledging the seasonal variability of the circulation regimes in North Europe and their correlation with regional precipitation rates over the Rhine basin. Two different climate model ensemble outputs are explored: ESSENCE and CMIP5. The results of the CP-method are then compared to observations and uncorrected model outputs. Results from a simple bias correction based on a delta factor (NoCP-method) are also used for comparison. For both summer and winter, the CP-method offers a statistically significant improvement of precipitation statistics for subsets of data dominated by particular circulation regimes, demonstrating the circulation-dependence of the precipitation bias. Uncorrected, CP and NoCP corrected model outputs were used as forcing to a hydrological model to simulate river discharges. The CP-method leads to a larger improvement in simulated discharge in the Alpine area in winter than in summer due to a stronger dependence of Rhine precipitation on atmospheric circulation in winter. However, the NoCP-method, in comparison to the CP-method, improves the discharge estimations over the entire Rhine basin.  相似文献   
33.
The aim of this study is to assess the impact of biotic and abiotic factors on peatland formation in the Central Sudetes (central Europe) during the late Holocene. The research methodology adopted allowed us to determine whether vegetation development and shallow peatland formation were affected by human activity. Knowledge of past changes might be useful in evaluating recent and future changes, and to avoid pitfalls in the present management of peatland ecosystems. A palaeoecological research study of four peatlands was conducted in the Sto?owe Mountains (Central Sudetes, SW Poland). The results showed that these shallow peatlands originated in the middle to late Holocene (from 3301 BC to AD 1137). Palaeoecological records reflect continuous human impact on vegetation development and peat accumulation from the Middle Ages to the present (late Holocene). The strongest agrarian settler activity is observed in the High Middle Ages (AD 1200–1500). The human‐induced or wildfires observed in the late Holocene were an integral component of peatland ecosystems in the Central Sudetes. Moreover, palaeoecological analysis (sphagnum spores decline) and radiocarbon dating (AD 1870) confirmed drainage of the study area in the 19th century, which greatly affected the vegetation communities.  相似文献   
34.
Hydrologic Sensitivity of Global Rivers to Climate Change   总被引:12,自引:1,他引:12  
Climate predictions from four state-of-the-art general circulation models (GCMs) were used to assess the hydrologic sensitivity to climate change of nine large, continental river basins (Amazon, Amur, Mackenzie, Mekong, Mississippi, Severnaya Dvina, Xi, Yellow, Yenisei). The four climate models (HCCPR-CM2, HCCPR-CM3, MPI-ECHAM4, and DOE-PCM3) all predicted transient climate response to changing greenhouse gas concentrations, and incorporated modern land surface parameterizations. Model-predicted monthly average precipitation and temperature changes were downscaled to the river basin level using model increments (transient minus control) to adjust for GCM bias. The variable infiltration capacity (VIC) macroscale hydrological model (MHM) was used to calculate the corresponding changes in hydrologic fluxes (especially streamflow and evapotranspiration) and moisture storages. Hydrologic model simulations were performed for decades centered on 2025 and 2045. In addition, a sensitivity study was performed in which temperature and precipitation were increased independently by 2 °C and 10%, respectively, during each of four seasons. All GCMs predict a warming for all nine basins, with the greatest warming predicted to occur during the winter months in the highest latitudes. Precipitation generally increases, but the monthly precipitation signal varies more between the models than does temperature. The largest changes in the hydrological cycle are predicted for the snow-dominated basins of mid to higher latitudes. This results in part from the greater amount of warming predicted for these regions, but more importantly, because of the important role of snow in the water balance. Because the snow pack integrates the effects of climate change over a period of months, the largest changes occur in early to mid spring when snow melt occurs. The climate change responses are somewhat different for the coldest snow dominated basins than for those with more transitional snow regimes. In the coldest basins, the response to warming is an increase of the spring streamflow peak, whereas for the transitional basins spring runoff decreases. Instead, the transitional basins have large increases in winter streamflows. The hydrological response of most tropical and mid-latitude basins to the warmer and somewhat wetter conditions predicted by the GCMs is a reduction in annual streamflow, although again, considerable disagreement exists among the different GCMs. In contrast, for the high-latitude basins increases in annual flow volume are predicted in most cases.  相似文献   
35.
“Buffer capacities” has been defined in ecology as a holistic concept (e.g., Integration of Ecosystem Theories: A Pattern, second ed. Kluwer, Dordrecht, 1997, 388pp), but we show that it can also be worked out in mechanistic studies. Our mechanistic approach highlights that “buffering capacities” can be depleted progressively, and, therefore, we make a distinction between current and potential “buffering capacities”. We have applied this concept to understand the limited “local stability” in seagrass ecosystems and their vulnerability towards structural changes into macro-algal dominated communities. We explored the following processes and studied how they confer buffering capacities to the seagrass ecosystem: (i) net autotrophy is persistent in Zostera noltii meadows where plant assimilation acts as a sink for nutrients, this contrasted with the Ulva system that shifted back and forth between net autotrophy and net heterotrophy; (ii) the Z. noltii ecosystem possesses a certain albeit rather limited capacity to modify the balance between nitrogen fixation and denitrification, i.e., it was found that in situ nitrogen fixation always exceeded denitrification; (iii) the nitrogen demand of organoheterotrophic bacteria in the sediment results in nitrogen retention of N in the sediment and hence a buffer against release of nitrogen compounds from sediments, (iv) habitat diversification in seagrass meadows provides shelter for meiofauna and hence buffering against adverse conditions, (v) sedimentary iron provides a buffer against noxious sulfide (note: bacterial sulfide production is enhanced in anoxic sediment niches by increased organic matter loading). On the other hand, in the coastal system we studied, sedimentary iron appears less important as a redox-coupled buffer system against phosphate loading. This is because most inorganic phosphate is bound to calcium rather than to iron. In addition, our studies have highlighted the importance of plant–microbe interactions in the seagrass meadows.  相似文献   
36.
Summary Seismic microzoning of Prague was performed using geological data and seismic response (ground shaking) computations. The Prague territory was covered by a square grid, each square 250 m×250 m being characterized by a simplified geological cross-section from the Earth's surface to the bedrock boundary. The data were obtained from detailed engineering-geological maps 1:5000. The geological cross-sections were transformed into a set of layered models, specified by the thicknesses of individual layers and corresponding compressional and shear-wave velocities, densities and parameters of the causal absorption. The seismic responses were computed by the matrix method. The main amplitude and frequency characteristics of the responses are demonstrated in the form of microzoning maps. The maps do not depend on the specific type of seismic excitation. They make it possible to predict the relative amplification of P and S waves, with respect to the bedrock outcrop, all over the city.  相似文献   
37.
Discharge areas of hydrothermal springs are known to be inhabited by diverse types of microorganisms including archaea, prokaryotes and eukaryotes. A total of 11 hydrothermal samples from the Rio Grande rift and the Valles caldera in New Mexico were analyzed to investigate the correlation between chemical and microbiological parameters of hydrothermal waters. The sampled fluids are categorized into three chemical groups: (I) steam-condensing acid sulfate waters, (II) deep geothermal and derivative waters and (III) thermal meteoric waters. Analyses of the microbial phospholipid fatty acids and denaturing gradient gel electrophoresis of DNA show that acid sulfate waters were populated by thermoacidophilic organisms and had high biomass content. Mineralized deep geothermal and derivative waters exhibited a high degree of microbial diversity, but had low biomass content. Thermal meteoric waters are low in total dissolved solids, and exhibit very low biomass content and microbial diversity. DNA sequences from several previously unknown microbial species were detected. The results of this study support the hypothesis that microbes can be used as tracers for specific types of subsurface environments.  相似文献   
38.
The source terms arising from radioactive/toxic metal waste repositories will contain a multitude of dissolved metal species, as do natural systems. The influence of sorption competition on the uptake of safety-relevant metals, and the effects this may have on transport rates to the biosphere, is an important repository performance assessment issue which has not, as yet, been resolved. The main aim of this work was to quantify the influence of competition between metals in different valence states on their individual sorption characteristics under conditions dominated by pH-dependent sorption. The sorption experiments were carried out on Na- and Ca-montmorillonites using various combinations and concentrations of Co(II), Ni(II), Zn(II), Eu(III), Nd(III), Am(III), Th(IV), and U(VI). For metals sorbing at trace concentrations in a background electrolyte containing a competing metal up to mmolar concentrations, and pH values generally greater than 6, all of the experimental results were consistent with the observation that metals with similar chemistries (valence state, hydrolysis behavior) compete with one another, but metals with dissimilar chemistries do not compete, i.e., competition is selective. For example Eu, Nd, and Am exhibit unambiguous sorption competition effects, as do Ni, Co, and Zn. On the basis of the above preliminary criteria, competition between divalent transition metals and trivalent lanthanides, Th(IV), and U(VI) and between Th (IV) and U(VI) would not be expected, and this is found experimentally. In general, neither single-fixed-site capacity models nor two-site (strong/weak) models with fixed capacities, whether with or without electrostatic terms, are capable of modeling the spectrum of experimental results presented here. To explain the competitive effects observed it is proposed that multiple sets of strong sites exist as subsets of the 40 mmol kg−1 of weak sites present in the montmorillonite conceptual model. It is shown that if the 2SPNE SC/CE sorption model is extended to include multiple strong sites, and the average site capacity and protolysis constant values defined in previous publications are assigned to each of the sets of strong sites, then the model can be used to reproduce all of the experimental data, provided it can be specified which groups of metals are competitive and which are not.  相似文献   
39.
ARIEL, the Atmospheric Remote sensing Infrared Exoplanet Large survey, is one of the three M-class mission candidates competing for the M4 launch slot within the Cosmic Vision science programme of the European Space Agency (ESA). As such, ARIEL has been the subject of a Phase A study that involved European industry, research institutes and universities from ESA member states. This study is now completed and the M4 down-selection is expected to be concluded in November 2017. ARIEL is a concept for a dedicated mission to measure the chemical composition and structure of hundreds of exoplanet atmospheres using the technique of transit spectroscopy. ARIEL targets extend from gas giants (Jupiter or Neptune-like) to super-Earths in the very hot to warm zones of F to M-type host stars, opening up the way to large-scale, comparative planetology that would place our own Solar System in the context of other planetary systems in the Milky Way. A technical and programmatic review of the ARIEL mission was performed between February and May 2017, with the objective of assessing the readiness of the mission to progress to the Phase B1 study. No critical issues were identified and the mission was deemed technically feasible within the M4 programmatic boundary conditions. In this paper we give an overview of the final mission concept for ARIEL as of the end of the Phase A study, from scientific, technical and operational perspectives.  相似文献   
40.
During floods, large quantities of wood can be mobilized and transported downstream. At critical sections, such as bridges, the transported wood might be entrapped and a quick succession of backwater effects can occur as a result of the reduction of the cross‐sectional area. The aim of this work is to explore large wood‐related hazards during floods in the gravel‐bed river Czarny Dunajec (Polish Carpathians), where the river flows through the village of D?ugopole. This work is based on the numerical modelling of large wood transport together with flow dynamics in which inlet and boundary conditions were designed based on field observations. The exploratory approach developed in this study uses multiple scenarios (193) to analyse the factors controlling bridge clogging: wood size, wood supply, flow conditions, morphology and obstacles in the riverbed. Results highlighted the strong control of log length (stronger than that of log diameter) on potential blockage probability; however, according to our results the main factor controlling bridge clogging was the flood discharge. River morphology and wood supply play an important role as well. The river morphology may reduce bridge blockage, as it influences flow velocity and depth, and creates natural retention zones for wood. In addition, the impacts of bridge blockage were analysed in terms of afflux depth and length, and flooded area. Results showed that bridge blockage may result in a significant increase in water depth (up to 0.7 m) and flooded area (up to 33% more), therefore increasing flood risk in the village. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号