首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   18篇
  国内免费   6篇
测绘学   6篇
大气科学   20篇
地球物理   86篇
地质学   97篇
海洋学   25篇
天文学   95篇
自然地理   32篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   7篇
  2017年   7篇
  2016年   16篇
  2015年   13篇
  2014年   10篇
  2013年   20篇
  2012年   12篇
  2011年   21篇
  2010年   18篇
  2009年   21篇
  2008年   13篇
  2007年   24篇
  2006年   17篇
  2005年   12篇
  2004年   14篇
  2003年   9篇
  2002年   14篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   11篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1986年   3篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   8篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
  1972年   3篇
  1970年   1篇
  1969年   2篇
  1966年   1篇
排序方式: 共有361条查询结果,搜索用时 31 毫秒
51.
4D seismic is widely used to remotely monitor fluid movement in subsurface reservoirs. This technique is especially effective offshore where high survey repeatability can be achieved. It comes as no surprise that the first 4D seismic that successfully monitored the CO2 sequestration process was recorded offshore in the Sleipner field, North Sea. In the case of land projects, poor repeatability of the land seismic data due to low S/N ratio often obscures the time‐lapse seismic signal. Hence for a successful on shore monitoring program improving seismic repeatability is essential. Stage 2 of the CO2CRC Otway project involves an injection of a small amount (around 15,000 tonnes) of CO2/CH4 gas mixture into a saline aquifer at a depth of approximately 1.5 km. Previous studies at this site showed that seismic repeatability is relatively low due to variations in weather conditions, near surface geology and farming activities. In order to improve time‐lapse seismic monitoring capabilities, a permanent receiver array can be utilised to improve signal to noise ratio and hence repeatability. A small‐scale trial of such an array was conducted at the Otway site in June 2012. A set of 25 geophones was installed in 3 m deep boreholes in parallel to the same number of surface geophones. In addition, four geophones were placed into boreholes of 1–12 m depth. In order to assess the gain in the signal‐to‐noise ratio and repeatability, both active and passive seismic surveys were carried out. The surveys were conducted in relatively poor weather conditions, with rain, strong wind and thunderstorms. With such an amplified background noise level, we found that the noise level for buried geophones is on average 20 dB lower compared to the surface geophones. The levels of repeatability for borehole geophones estimated around direct wave, reflected wave and ground roll are twice as high as for the surface geophones. Both borehole and surface geophones produce the best repeatability in the 30–90 Hz frequency range. The influence of burying depth on S/N ratio and repeatability shows that significant improvement in repeatability can be reached at a depth of 3 m. The level of repeatability remains relatively constant between 3 and 12 m depths.  相似文献   
52.
Naturally fractured reservoirs are becoming increasingly important for oil and gas exploration in many areas of the world. Because fractures may control the permeability of a reservoir, it is important to be able to find and characterize fractured zones. In fractured reservoirs, the wave‐induced fluid flow between pores and fractures can cause significant dispersion and attenuation of seismic waves. For waves propagating normal to the fractures, this effect has been quantified in earlier studies. Here we extend normal incidence results to oblique incidence using known expressions for the stiffness tensors in the low‐ and high‐frequency limits. This allows us to quantify frequency‐dependent anisotropy due to the wave‐induced flow between pores and fractures and gives a simple recipe for computing phase velocities and attenuation factors of quasi‐P and SV waves as functions of frequency and angle. These frequency and angle dependencies are concisely expressed through dimensionless velocity anisotropy and attenuation anisotropy parameters. It is found that, although at low frequencies, the medium is close to elliptical (which is to be expected as a dry medium containing a distribution of penny‐shaped cracks is known to be close to elliptical); at high frequencies, the coupling between P‐wave and SV‐wave results in anisotropy due to the non‐vanishing excess tangential compliance.  相似文献   
53.
Time‐lapse seismic analysis is utilized in CO2 geosequestration to verify the CO2 containment within a reservoir. A major risk associated with geosequestration is a possible leakage of CO2 from the storage formation into overlaying formations. To mitigate this risk, the deployment of carbon capture and storage projects requires fast and reliable detection of relatively small volumes of CO2 outside the storage formation. To do this, it is necessary to predict typical seepage scenarios and improve subsurface seepage detection methods. In this work we present a technique for CO2 monitoring based on the detection of diffracted waves in time‐lapse seismic data. In the case of CO2 seepage, the migrating plume might form small secondary accumulations that would produce diffracted, rather than reflected waves. From time‐lapse data analysis, we are able to separate the diffracted waves from the predominant reflections in order to image the small CO2 plumes. To explore possibilities to detect relatively small amounts of CO2, we performed synthetic time‐lapse seismic modelling based on the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Otway project data. The detection method is based on defining the CO2 location by measuring the coherency of the signal along diffraction offset‐traveltime curves. The technique is applied to a time‐lapse stacked section using a stacking velocity to construct offset‐traveltime curves. Given the amount of noise found in the surface seismic data, the predicted minimum detectable amount of CO2 is 1000–2000 tonnes. This method was also applied to real data obtained from a time‐lapse seismic physical model. The use of diffractions rather than reflections for monitoring small amounts of CO2 can enhance the capability of subsurface monitoring in CO2 geosequestration projects.  相似文献   
54.
The town of Zafferana Etnea, located on the southeastern slope of Mt. Etna volcano (Italy), has been repeatedly threatened by lava flows in recent centuries. The last serious threat occurred during the 1991–1993 eruption, when the lava front came to a halt only 1.7 km from the centre of town. Morphostructural data derived from light detection and ranging (LiDAR) surveys carried out on Etna in 2005 have enabled us to evaluate the risk of lava invasion in a section (16 km2) of the Zafferana Etnea territory. Qualitative and quantitative results are obtained combining the information derived from LiDAR analysis with geological, morphological and structural data using geographic information systems technology (GIS). The study quantifies in unprecedented detail the areal extent and volume of forested and urban areas and its degree of exposure to different levels of hazard from future lava invasion. Nearly 52% of the urban texture fall into areas of moderate to high risk from lava invasion. Future land use planning should take these findings into account and promote new development preferentially in areas of lower risk.  相似文献   
55.
56.
Terrain curvature is one of the most important parameters of land surface topography. Well-established methods used in its measurement compute an index of plan or profile curvature for every single cell of a digital elevation model (DEM). The interpretation of these outputs may be delicate, especially when selected locations have to be analyzed. Furthermore, they involve a high level of simplification, contrasting with the complex and multiscalar nature of the surface curvature itself. In this paper, we present a new method to assess vertical transverse and profile curvature combining real-scale visualization and the possibility to measure these two terrain derivatives over a large range of scales. To this purpose, we implemented a GIS tool that extracts longitudinal and transverse elevation profiles from a high-resolution DEM. The performance of our approach was compared with some of the most commonly used methods (ArcMap, Redlands, CA, USA; ArcSIE, Landserf) by analyzing the terrain curvature around charcoal production sites in southern Switzerland. The different methods produced comparable results. While conventional methods quickly summarize terrain curvature in the form of a matrix of values, they involve a loss of information. The advantage of the new method lies in the possibility to measure and visualize the shape and size of the curvature, and to obtain a realistic representation of the average curvature for different subsets of spatial points. Moreover, the new method makes it possible to control the conditions in which the index of curvature is calculated.  相似文献   
57.
Wave-induced fluid flow generates a dominant attenuation mechanism in porous media. It consists of energy loss due to P-wave conversion to Biot (diffusive) modes at mesoscopic-scale inhomogeneities. Fractured poroelastic media show significant attenuation and velocity dispersion due to this mechanism. The theory has first been developed for the symmetry axis of the equivalent transversely isotropic (TI) medium corresponding to a poroelastic medium containing planar fractures. In this work, we consider the theory for all propagation angles by obtaining the five complex and frequency-dependent stiffnesses of the equivalent TI medium as a function of frequency. We assume that the flow direction is perpendicular to the layering plane and is independent of the loading direction. As a consequence, the behaviour of the medium can be described by a single relaxation function. We first consider the limiting case of an open (highly permeable) fracture of negligible thickness. We then compute the associated wave velocities and quality factors as a function of the propagation direction (phase and ray angles) and frequency. The location of the relaxation peak depends on the distance between fractures (the mesoscopic distance), viscosity, permeability and fractures compliances. The flow induced by wave propagation affects the quasi-shear (qS) wave with levels of attenuation similar to those of the quasi-compressional (qP) wave. On the other hand, a general fracture can be modeled as a sequence of poroelastic layers, where one of the layers is very thin. Modeling fractures of different thickness filled with CO2 embedded in a background medium saturated with a stiffer fluid also shows considerable attenuation and velocity dispersion. If the fracture and background frames are the same, the equivalent medium is isotropic, but strong wave anisotropy occurs in the case of a frameless and highly permeable fracture material, for instance a suspension of solid particles in the fluid.  相似文献   
58.
In many megacities of the global south, the combination of rapid population growth and high pressure on space for housing, results in urban growth taking place in areas particularly prone to natural hazards. Dhaka, the capital of Bangladesh, is no exception to this rule. Many marginal settlements or slums are located on low-lying land at high risk of flooding. This paper analyzes the vulnerability of slum dwellers in Dhaka and highlights the major factors behind their sensitivity to floods and their ability to adapt to the related changes. The empirical findings presented are based on a questionnaire survey covering 625 households in five slum areas of Dhaka. Our data suggests that social capital plays an important role with regard to the ability of slum dwellers to find ways to live with the floods. Regardless of how strongly people are affected, mutual help and support are dominant features in times of crises. While poorly educated and resourced slum dwellers are highly vulnerable to external shocks, they still show a surprising capacity to cope with natural calamities.  相似文献   
59.
Submarine mud volcanism is an important pathway for transfer of deep-sourced fluids enriched in hydrocarbons and other elements into the ocean. Numerous mud volcanoes (MVs) have been discovered along oceanic plate margins, and integrated elemental fluxes are potentially significant for oceanic chemical budgets. Here, we present the first detailed study of the spatial variation in fluid and chemical fluxes at the Carlos Ribeiro MV in the Gulf of Cadiz. To this end, we combine analyses of the chemical composition of pore fluids with a 1-D transport-reaction model to quantify fluid fluxes, and fluxes of boron, lithium and methane, across the sediment-seawater interface. The pore fluids are significantly depleted in chloride, but enriched in lithium, boron and hydrocarbons, relative to seawater. Pore water profiles of sulphate, hydrogen sulphide and total alkalinity indicate that anaerobic oxidation of methane occurs at 34-180 cm depth below seafloor. Clay mineral dehydration, and in particular the transformation of smectite to illite, produces pore fluids that are depleted in chloride and potassium. Profiles of boron, lithium and potassium are closely related, which suggests that lithium and boron are released from the sediments during this transformation. Pore fluids are expelled into the water column by advection; fluid flow velocities are 4 cm yr−1 at the apex of the MV but they rapidly decrease to 0.4 cm yr−1 at the periphery. The associated fluxes of boron, lithium and methane vary between 7-301, 0.5-6 and 0-806 mmol m−2 yr−1, respectively. We demonstrate that fluxes of Li and B due to mud volcanism may be important on a global scale, however, release of methane into the overlying water column is suppressed by microbial methanotrophy.  相似文献   
60.
Modeling isotopic signatures in systems affected by diffusion, advection, and a reaction which modifies the isotopic abundance of a given species, is a discipline in its infancy. Traditionally, much emphasis has been placed on kinetic isotope effects during biochemical reactions, while isotope effects caused by isotope specific diffusion coefficients have been neglected. A recent study by Donahue et al. (2008) suggested that transport related isotope effects may be of similar magnitude as microbially mediated isotope effects. Although it was later shown that the assumed differences in the isotope specific diffusion coefficients were probably overstated by one or two orders of magnitude (Bourg, 2008), this study raises several important issues: (1) Is it possible to directly calculate isotopic enrichment factors from measured concentration data without modeling the respective system? (2) Do changes in porosity and advection velocity modulate the influence of isotope specific diffusion coefficients on the fractionation factor α? (3) If one has no a priori knowledge whether diffusion coefficients are isotope specific or not, what is the nature and magnitude of the error introduced by either assumption? Here we argue (A) That the direct substitution of measured data into a differential equation is problematic and cannot be used as a replacement for a reaction-transport model; (B) That the transport related fractionation scales linearly with the difference between the respective diffusion coefficients of a given isotope system, but depends in a complex non-linear way on the interplay between advection velocity, and downcore changes of temperature and porosity. Last but not least, we argue that the influence of isotope specific diffusion coefficients on microbially mediated sulfate reduction in typical marine sediments is considerably smaller than the error associated with the determination of the fractionation factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号