where T is temperature in degrees Celsius, δarag is the δ18O value of aragonite normalized to VPDB, and δsw is the δ18O value of water normalized to VSMOW. This calibration improves accuracy and precision of Caribbean sclerosponges for reconstructions of temperature as well as δ18O values of seawater.  相似文献   
96.
Detection of fluorescent compounds in the environment using granular activated charcoal detectors     
Chris Smart  Brad Simpson 《Environmental Geology》2002,42(5):538-545
Granular activated charcoal (GAC) acts as a general adsorptive medium for organic molecules, and is widely used to capture fluorescent tracer dyes. To investigate the capability of GAC in contaminant screening and tracer adsorption, a number of detectors were deployed for 2-6 days in a range of urban surface waters, and the adsorbed compounds eluted in an alkaline alcohol solution. Simultaneous water samples showed a diverse range of fluorescence environments, ranging from relatively clean, steady groundwater discharge, to highly concentrated and variable treated municipal sewage. A wide variety of organic compounds and dyes were found in the waters, as chronic and acute contaminants. The relationship between charcoal and water spectra depended on exposure time and loading. Short exposure times emphasized short wavelengths, longer exposure times emphasized longer wavelengths at the expense of shorter wavelengths. The magnitude of the effect depended on loading, being greater in enriched waters. In general, charcoal eluent shows a significant gain in fluorescence intensity over water. However, there may be an apparent loss at shorter wavelengths for samples with long exposure times and high loading. A similar bias was also discovered with the elution time of activated charcoal. Short wavelength fluorescence intensity peaked after a few minutes of elution; longer wavelength fluorescence increased over many days. These results show that charcoal is a reasonably effective material for adsorption of longer wavelength compounds. However, the ubiquity of many fluorescent dyes in the environment, and the complex relationship between the waters and the eluent spectrum, suggest that considerable care is required in the interpretation of eluent spectra.  相似文献   
97.
Defining the Quaternary     
Brad Pillans  Tim Naish 《Quaternary Science Reviews》2004,23(23-24):2271-2282
The Quaternary System is under threat of extinction as a chronostratigraphic unit in the international Geological Time Scale. In its place, the Neogene System (previously comprising Miocene and Pliocene Series), is to be extended to include the Pleistocene and Holocene Series. It may be possible to “save” the Quaternary by defining it as a Subsystem of the Neogene. In doing so, it would be an opportune time to extend the base of the Quaternary to 2.6 Ma to encompass the time during which (1) Earth's climate has been strongly influenced by bi-polar glaciation, and (2) the genus Homo first appeared and evolved.  相似文献   
98.
Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions   总被引:19,自引:0,他引:19  
Larry D. Hinzman  Neil D. Bettez  W. Robert Bolton  F. Stuart Chapin  Mark B. Dyurgerov  Chris L. Fastie  Brad Griffith  Robert D. Hollister  Allen Hope  Henry P. Huntington  Anne M. Jensen  Gensuo J. Jia  Torre Jorgenson  Douglas L. Kane  David R. Klein  Gary Kofinas  Amanda H. Lynch  Andrea H. Lloyd  A. David McGuire  Frederick E. Nelson  Walter C. Oechel  Thomas E. Osterkamp  Charles H. Racine  Vladimir E. Romanovsky  Robert S. Stone  Douglas A. Stow  Matthew Sturm  Craig E. Tweedie  George L. Vourlitis  Marilyn D. Walker  Donald A. Walker  Patrick J. Webber  Jeffrey M. Welker  Kevin S. Winker  Kenji Yoshikawa 《Climatic change》2005,72(3):251-298
The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling.  相似文献   
99.
Increased Thermal-Pulse Flowmeter Resolution by Adding a Packer and Computer     
Brad F. Lyles 《Ground Water Monitoring & Remediation》1994,14(4):191-199
Measurement accuracy was increased by nearly one order of magnitude by outfitting the thermal-pulse flowmeter (TFM) with an inflatable packer. To accurately measure slow water velocities in boreholes greater than 15 cm diameter, it is necessary to divert borehole fluids through the TFM by inflating a packer. During calibration it was noted that the TFM's accuracy decreased as the borehole diameter increased. With Lhe packer inflated the TFM has a useful flow measurement range of 0.08 to 15 L/min (with flow velocities of 0.24 ± 0.012 cm/inin to 45.7 ± 0.61 cm/min, respectively, in 20-cm-diameter pipe), compared to 0.8 to 57 L/min for a packcrless TFM. A computer interlace was added to the TFM to provide a real-time graphical display of the differential voltage output from the TFM, a running mean and standard deviation of the pulse-response time, and a mean flow rate and velocity based on calibration curve fits.  相似文献   
100.
Sensitivity analysis of pediment development through numerical simulation and selected geospatial query     
Mark W. Strudley  A. Brad Murray 《Geomorphology》2007,88(3-4):329-351
Dozens of references recognizing pediment landforms in widely varying lithologic, climatic, and tectonic settings suggest a ubiquity in pediment forming processes on mountain piedmonts worldwide. Previous modeling work illustrates the development of a unique range in arid/semiarid piedmont slope (< 0.2 or 11.3°) and regolith thickness (2–4 m) that defines pediments, despite varying the initial conditions and domain characteristics (initial regolith thickness, slope, distance from basin to crest, topographic perturbations, and boundary conditions) and process rates (fluvial sediment transport efficiency and weathering rates). This paper expands upon the sensitivity analysis through numerical simulation of pediment development in the presence of spatially varying rock type, various base level histories, various styles of sediment transport, and various rainfall rates to determine how pediment development might be restricted in certain environments. This work suggests that in landscapes characterized by soil and vegetation types that favor incisive fluvial sediment transport styles coupled with incisive base level conditions, pediment development will be disrupted by the roughening of sediment mantled surfaces, thereby creating spatial variability in topography, regolith thickness, and bedrock weathering rates. Base level incision rates that exceed the integrated sediment flux along a hillslope derived from upslope weathering and sediment transport on the order of 10− 3 m y− 1 restrict pediment development by fostering piedmont incision and/or wholesale removal (stripping) of regolith mantles prior to footslope pediment development. Simulations illustrate an insensitivity to alternating layers of sandstone and shale 3–15 m thick oriented in various geometric configurations (vertical, horizontal, and dip-slope) and generating different regolith hydrologic properties and exhibiting weathering rate variations up to 3-fold. Higher fluxes and residence times of subsurface groundwater in more humid environments, as well as dissolution-type weathering, lead to a thickening of regolith mantles on erosional piedmonts on the order of 101 m and an elimination of pediment morphology. An initial test of the model sensitivity analysis in arid/semiarid environments, for which field reconnaissance and detailed geomorphic mapping indicate the presence of pediments controlled by climatic conditions (soil hydrologic properties, vegetation characteristics, and bedrock weathering style) that are known and constant, supports our modeling results that pediments are more prevalent in hydrologically-open basins.  相似文献   
[首页] « 上一页 [5] [6] [7] [8] [9] 10 [11] [12] [13] [14] [15] 下一页 » 末  页»
  首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   8篇
  国内免费   4篇
测绘学   26篇
大气科学   11篇
地球物理   44篇
地质学   44篇
海洋学   6篇
天文学   41篇
自然地理   13篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   7篇
  2013年   32篇
  2012年   8篇
  2011年   7篇
  2010年   11篇
  2009年   7篇
  2008年   11篇
  2007年   11篇
  2006年   10篇
  2005年   6篇
  2004年   11篇
  2003年   5篇
  2002年   8篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1994年   2篇
  1992年   1篇
  1990年   2篇
  1987年   2篇
  1977年   1篇
  1971年   1篇
排序方式: 共有185条查询结果,搜索用时 428 毫秒
91.
We examined the spatiotemporal changes of microbial communities in relation to hydrochemistry variation over time and space in an aquifer polluted by landfill leachate (Banisveld, The Netherlands). Sampling in 1998, 1999, and 2004 at the same time of the year revealed that the center of the pollution plume was hydrochemically rather stable, but its upper fringe moved to the surface over time, especially at distances greater than 40 m away from the landfill. Complex and spatiotemporal heterogeneous bacterial and eukaryotic communities were resolved using denaturing gradient gel electrophoresis (DGGE) of 16S and 18S rRNA gene fragments. Large fluctuations were noted in the eukaryotic communities associated with strongly polluted and cleaner groundwater. The bacterial communities in strongly polluted samples were different from those in cleaner groundwater in 1998 and 1999, but no longer in 2004. The temporal variation in microbial communities was greater than the spatial variation: the 1998 bacteria communities in strongly polluted groundwater were more related to each other than to those recovered in 1999 and 2004. During the three sampling periods, the bacterial communities were more stable close to the landfill than at larger distances from the landfill. Overall, pollution appears to have only a minor influence on microbial communities. The considerable spatiotemporal variation in microbial community composition may contribute to better biodegradation of pollutants. Designing management strategies for natural attenuation of aquifer pollution will benefit from further long‐term, high‐density monitoring of changes in microbial communities, their diversity and physiological properties, in relation to changes in hydrochemistry.  相似文献   
92.
Rapid temporal variability of SO2 and SO in the Venus 85–100 km mesosphere (Sandor, B.J., Clancy, R.T., Moriarty-Schieven G.H. [2007]. Bull. Am. Astron. Soc. 39, 503; Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G.H., Mills, F.P. [2010]. Icarus 208, 49–60) requires in situ sources and sinks for these molecules. While many loss mechanisms are recognized, no process for in situ production is known. Observational investigations to find, or constrain other potential sulfur reservoirs offer one method toward understanding the applicable photochemistry. Here, we report upper limits for gas-phase H2SO4 (sulfuric acid) abundances in Venus’ 85–100 km upper mesosphere, derived from 16 ground-based sub-mm spectroscopic observations in the period 2004–2008. Unlike the ubiquitous sulfuric acid solid/liquid aerosol, the gas phase would be photochemically active, potentially both source and sink for SO and SO2. H2SO4 is retrieved from sub-mm lines located in the same bandpass as the SO2 and SO lines described by Sandor et al. (Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G.H., Mills, F.P. [2010]. Icarus 208, 49–60). H2SO4 upper limits reported here are thus simultaneous and spatially coincident with measurements of SO2 and SO, providing for analysis of the three sulfur species collectively. The average H2SO4 abundance over 16 observations is 1 ± 2 ppb (i.e. <3 ppb). Upper limits for individual observations range from 3 to 44 ppb, where quality of the observing weather is the dominant constraint on measurement precision. The sum of H2SO4, SO2 and SO varies widely. In one comparison, the sum [H2SO4 + SO2 + SO] measured on one date differs by 10-σ from the sum measured 2 months later. We conclude that upper mesospheric sulfur atoms are not conserved among the three molecules, that H2SO4 is not a significant sulfur reservoir for balancing the observed variations of [SO2 + SO], and is not relevant to the (still unknown) photochemistry responsible for observed behavior of SO2 and SO. Having ruled out H2SO4, we infer that elemental sulfur is the most probable candidate for the needed third reservoir.  相似文献   
93.
In response to climatic warming, eustatic sea level has been predicted to rise by about 50 cm in the next century. While feedbacks between vegetation growth and sediment deposition tend to allow marshes to maintain their morphology under a constant rate of sea level rise, recent observations of marsh deterioration suggest that changes in the rate of sea level rise may induce loss of economically and ecologically important marshland. We have developed a three dimensional model of tidal marsh evolution that couples vegetation growth and sediment transport processes including bed accretion and wave erosion. We use the model to simulate the response of marshes and tidal flats along the Fraser River Delta, British Columbia to 100 yr forecasts of sea level change. Under low sea level-rise scenarios, the delta and its marshes prograde slightly, consistent with historical measurements. While accretionary processes greatly mediate the response to increased rates of sea level rise, vegetation zones transgress landward under median and high sea level rise rate scenarios. In these scenarios, low marsh erosion and constriction of high marsh vegetation against a dyke at its landward edge result in a 15–35% loss of marshland in the next century. Several important behavioral changes take place after 2050, suggesting that predictions based on field observations and short term model experiments may not adequately characterize (and sometimes underestimate) long-term change. In particular, the replacement of highly productive high marsh vegetation by less productive low marsh vegetation results in continued reduction of the system's total biomass productivity, even as the rate of loss of vegetated area begins to decline.  相似文献   
94.
Heterogeneity of hydraulic properties in aquifers may lead to contaminants residing in lower‐permeability zones where it is difficult to deliver remediation amendments using conventional injection processes. The focus of this study is to examine use of a shear‐thinning fluid (STF) to improve the uniformity of remedial amendment distribution within a heterogeneous aquifer. Previous studies have demonstrated the significant potential of STFs for improving remedial amendment delivery in heterogeneous aquifers, but quantitative evaluation of these improvements from field applications is lacking. A field‐scale test was conducted that compares data from successive injection of a tracer in water followed by injection of a tracer in an STF to evaluate the impact of the STF on tracer distribution uniformity in the presence of permeability contrasts within the targeted injection zone. Data from tracer breakthrough at multiple depth‐discrete monitoring intervals and electrical resistivity tomography (ERT) showed that inclusion of STF in the injection solution improved the distribution of the injected fluid within the targeted treatment zone. One improvement was a reduction in the movement of injected fluids through high‐permeability pathways, as evidenced by slower breakthrough of tracer at monitoring locations where breakthrough in baseline tracer‐only injection data was faster. In addition, STF‐amended injection solutions arrived faster and to a greater extent in monitoring locations within low‐permeability zones. ERT data showed that the STF injection covered a higher percentage of a two‐dimensional cross section within the injection interval between the injection well and a monitoring well about 3 m away.  相似文献   
95.
A revised calibration is presented relating the oxygen isotope composition of the aragonite-secreting sclerosponge Ceratoporella nicholsoni, oxygen isotope composition of seawater, and ambient water temperature. This new relationship has been obtained using high-resolution δ18O data measured in sclerosponges from the Bahamas and Jamaica compared to ambient temperature measurements and δ18O values of seawater from the two locations, both measured and published. New data improve an existing calibration which was determined using measurements of salinity rather than directly measured δ18O values of the seawater and was composed of measurements from different species of sclerosponge and other aragonite-secreting organisms. The updated calibration (n = 12, r2 = 0.95) is:
T(°C)=16.1(±3.1)-[6.5(±1.1)](δaragsw),
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号