首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   16篇
  国内免费   1篇
测绘学   7篇
大气科学   6篇
地球物理   49篇
地质学   77篇
海洋学   18篇
天文学   15篇
自然地理   13篇
  2024年   1篇
  2022年   4篇
  2021年   2篇
  2020年   9篇
  2019年   1篇
  2018年   4篇
  2017年   6篇
  2016年   14篇
  2015年   4篇
  2014年   3篇
  2013年   6篇
  2012年   6篇
  2011年   9篇
  2010年   11篇
  2009年   8篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   12篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1963年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
31.
32.
Isotopic heterogeneity within the solar nebula has been a long-standing issue. Studies on primitive chondrites and chondrite components for Ba, Sm, Nd, Mo, Ru, Hf, Ti, and Os yielded conflicting results, with some studies suggesting large-scale heterogeneity. Low-grade enstatite and Rumuruti chondrites represent the most extreme ends of the chondrite meteorites in terms of oxidation state, and might thus also present extremes if there is significant isotopic heterogeneity across the region of chondrite formation. Osmium is an ideal tracer because of its multiple isotopes generated by a combination of p-, r-, and s-process and, as a refractory element; it records the earliest stages of condensation.Some grade 3-4 enstatite and Rumuruti chondrites show similar deficits of s-process components as revealed by high-precision Os isotope studies in some low-grade carbonaceous and ordinary chondrites. Enstatite chondrites of grades 5-6 have Os isotopic composition identical within error to terrestrial and solar composition. This supports the view of digestion-resistant presolar grains, most likely SiC, as the major carrier of these anomalies. Destruction of presolar grains during parent body processing, which all high-grade enstatite chondrites, but also some low-grade chondrites seemingly underwent, makes the isotopically anomalous Os accessible for analysis. The magnitude of the anomalies is consistent with the presence of a few ppm of presolar SiC with a highly unusual isotopic composition, produced in a different stellar environment like asymptotic giant branch stars (AGB) and injected into the solar nebula. The presence of similar Os isotopic anomalies throughout all major chondrite groups implies that carriers of Os isotopic anomalies were homogeneously distributed in the solar nebula, at least across the formation region of chondrites.  相似文献   
33.
Triaxial shear testing of polished slickensided surfaces   总被引:1,自引:1,他引:0  
A series of consolidated-drained triaxial tests were performed on precut and polished clay specimens to measure their drained residual strength. Two soils were tested during this research program: Rancho Solano Clay and San Francisco Bay Mud. Specimens were tested using a specially modified triaxial compression device which was developed to minimize the effects of end-platen restraint on the measured strengths. Special attention was paid to the influence of changing specimen area and membrane effects during the test. Triaxial test results were compared with baseline measurements of drained residual shear strength that were made for each of the clay soils using Bromhead ring shear tests and polished-specimen direct shear tests. Residual strength values measured in the triaxial device were higher than the drained residual strengths measured in the Bromhead ring shear apparatus and the direct shear device, indicating that this test approach is more challenging than the use of direct shear tests conducted on polished slickensided surfaces. Comparison of single stage and multistage triaxial test data indicates that multistage triaxial testing may work well for specimens that fail along a well-defined plane, provided that careful attention is given to the effects of end platen restraint, membrane restraint, and changes in specimen area during shear.  相似文献   
34.
The primary focus of this paper is to better understand carbon burial on the Louisiana continental margin using spatial scales that covered various shelf depositional areas far-field and near-field (sediment and organic carbon inputs relative to river mouth proximity) and covering a variety of sedimentation rates. Box-cores samples were collected in July 2003; cores were collected along two depositional transects extending westward and southward from the Southwest Pass (SW Pass). A key difference between the two transects sampled in this study was the greater occurrence of mobile muds derived from spillover from shallower regions along the westward 50 m isobaths. The dominant mechanism for mixing in the surface active zone (SAZ) on the inner Louisiana shelf was due to physical, not biological, forces. Burial efficiencies for organic carbon (57.2–91.5%) and total nitrogen (44.2–86.9%) ranged widely across all shelf stations. Lower burial efficiencies for bulk organic carbon, total nitrogen, and pigment biomarkers were associated with mobile muds west of Southwest Pass. Chlorophyll a concentrations were significantly higher than pheopigments at depth at the Mississippi River and Southwest Pass stations, making up 40.4 and 77.4% of total pigment concentrations in the (SAZ) and 46.2 and 63.2% in the accumulation zone (AZ), respectively. These results are in agreement with earlier plant pigment studies which showed that a large fraction of the phytodetritus delivered to the inner shelf was derived from coastal and river diatoms. The amount of lignin preserved with depth decreased with increasing residence time in the SAZ and diagenetic zone (DZ) along the canyon transect but not along the western transect. Trends for lignin concentration followed previously identified surface sediment trends indicating overall lower burial of refractory terrestrial material at depth with greater distance offshore.  相似文献   
35.
Here we present results from a suite of laboratory experiments that highlight the influence of channel sinuosity on the depositional mechanics of channelized turbidity currents. We released turbidity currents into three channels in an experimental basin filled with water and monitored current properties and the evolution of topography via sedimentation. The three channels were similar in cross-sectional geometry but varied in sinuosity. Results from these experiments are used to constrain the run-up of channelized turbidity currents on the outer banks of moderate to high curvature channel bends. We find that a current is unlikely to remain contained within a channel when the kinetic energy of a flow exceeds the potential energy associated with an elevation gain equal to the channel relief; setting an effective upper limit for current velocity. Next we show that flow through bends induces a vertical mixing that redistributes suspended sediment back into the interiors of depositional turbidity currents. This mixing counteracts the natural tendency for suspended sediment concentration and grain size to stratify vertically, thereby reducing the rate at which sediment is lost from a current via deposition. Finally, the laboratory experiments suggest that turbidity currents might commonly separate from channel sidewalls along the inner banks of bends. In some cases, sedimentation rates and patterns within the resulting separation zones are sufficient to construct bar forms that are attached to the channel sidewalls and represent an important mechanism of submarine channel filling. These bar forms have inclined strata that might be mistaken for the deposits of point bars and internal levees, even though the formation mechanism and its implications to channel history are different.  相似文献   
36.
37.
Chemical heterogeneities in the Martian mantle are believed to result from the crystallization of a magma ocean in the first 100 million years of its history. Shergottite meteorites from Mars are thought to retain a compositional record of such early differentiation and the resulting mineralogy at different depths. The coupled 176Lu–176Hf and 147Sm–143Nd isotope systematics in 9 shergottites are used here to investigate these issues. Three compositional groups in the shergottites display distinct isotope systematics. One group, commonly termed as depleted, is characterized by positive 176Hfi from + 46.2 to + 50.4 and 143Ndi from + 36.2 to + 39.1. Another, termed as enriched, has negative 176Hfi = − 16.5 to − 13.2 and 143Ndi = − 7.0 to − 6.5. The third group is intermediate between the depleted and enriched groups with positive 176Hfi = + 30.0 to + 33.4 and 143Ndi = + 16.9. Together, they describe mixing curves between 176Hf/177Hf, 143Nd/144Nd, Lu/Hf, and Sm/Nd, implying that they sample two distinct sources in the Martian mantle. All shergottites are characterized by (Sm/Nd)source < (Sm/Nd)sample, but (Lu/Hf)source > (Lu/Hf)sample. This decoupling can be explained by two successive partial melting episodes in the depleted shergottite source and localized in the Martian upper mantle. The genesis of shergottites can be modeled using non-modal equilibrium partial melting in a source initially composed of 60% olivine, 21% clinopyroxene, 9% orthopyroxene, and 10% garnet, with degrees of partial melting of 8.8% and 3.9%, respectively, for the two successive events. The enriched end-member of the shergottite mixing curve is best modeled by late-stage quenched residual melt resulting from the crystallization of a magma ocean. The depleted shergottite source may be modeled as a mixture of cumulates and residual melt, as convection in the Martian magma ocean is expected to reduce the incompatible trace element heterogeneity in the final solidified layers. Consequently, equilibrium crystallization is preferred to model the crystallization of the Martian magma ocean. The models that best explain the shergottite data are those where the magma ocean is at a depth of at least 1350 km in Mars.  相似文献   
38.
In June 2003, we conducted a two-part field exercise to examine biogeochemical characteristics of water in the lower Mississippi river during the 4 days prior to discharge and in the Mississippi river plume over 2 days after discharge. Here we describe the fates of materials immediately after their discharge through Southwest Pass of the Mississippi delta into the northern Gulf of Mexico. Changes in surface water properties immediately after discharge were much larger and more rapid than changes prior to discharge. Total suspended matter (TSM) declined, probably due to sinking, dissolved macronutrients were rapidly diminished by mixing and biological uptake, and phytoplankton populations increased dramatically, and then declined. This decline appeared to begin at salinities of approximately 10 and was nearly complete by 15. A large increase in dissolved organic carbon (DOC) occurred over approximately the same salinity range. Weak winds (<2 m s−1) during and preceding this cruise apparently led to the formation of an extensive but thin freshwater lens from the river. This lens spread widely without much mixing, and the bloom of phytoplankton that occurred between discharge and a salinity of 10 was probably a freshwater community seeded from the lower river. Phytoplankton bloomed for a period of about 1–2 days, then declined dramatically, apparently releasing large amounts of DOC. Macronutrients from the river were utilized by the river phytoplankton community in the extensive freshwater lens. This contrasted with the more typical situation in which river nutrients stimulate a marine phytoplankton bloom at salinities in the mid-20s. We concluded that the direct effects of dissolved and particulate bio-reactive materials discharged by the Mississippi river were spatially restricted at this time to low-salinity water, at least as surface phenomena. After being transported through the lower river essentially unaltered, these materials were biogeochemically processed within days and tens of km. More generally, the mixing rate of plume water with receiving oceanic water has profound effects on the food web structure and biogeochemical cycling in the plume.  相似文献   
39.
We examined the occurrence of seasonal hypoxia (O2<2 mg l−1) in the bottom waters of four river-dominated ocean margins (off the Changjiang, Mississippi, Pearl and Rhône Rivers) and compared the processes leading to the depletion of oxygen. Consumption of oxygen in bottom waters is linked to biological oxygen demand fueled by organic matter from primary production in the nutrient-rich river plume and perhaps terrigenous inputs. Hypoxia occurs when this consumption exceeds replenishment by diffusion, turbulent mixing or lateral advection of oxygenated water. The margins off the Mississippi and Changjiang are affected the most by summer hypoxia, while the margins off the Rhône and the Pearl rivers systems are less affected, although nutrient concentrations in the river water are very similar in the four systems. Spring and summer primary production is high overall for the shelves adjacent to the Mississippi, Changjiang and Pearl (1–10 g C m−2 d−1), and lower off the Rhône River (<1 g C m−2 d−1), which could be one of the reasons of the absence of hypoxia on the Rhône shelf. The residence time of the bottom water is also related to the occurrence of hypoxia, with the Mississippi margin showing a long residence time and frequent occurrences of hypoxia during summer over very large spatial scales, whereas the East China Sea (ECS)/Changjiang displays hypoxia less regularly due to a shorter residence time of the bottom water. Physical stratification plays an important role with both the Changjiang and Mississippi shelf showing strong thermohaline stratification during summer over extended periods of time, whereas summer stratification is less prominent for the Pearl and Rhône partly due to the wind effect on mixing. The shape of the shelf is the last important factor since hypoxia occurs at intermediate depths (between 5 and 50 m) on broad shelves (Gulf of Mexico and ECS). Shallow estuaries with low residence time such as the Pearl River estuary during the summer wet season when mixing and flushing are dominant features, or deeper shelves, such as the Gulf of Lion off the Rhône show little or no hypoxia.  相似文献   
40.
Summary ?In this paper we present petrological and geochemical information on a bimodal basalt-rhyolite suite associated with A-type granites of Late Cretaceous age from the South Pannonian Basin in Slavonija (Croatia). Basalts and alkali-feldspar rhyolites, associated in some places with ignimbrites, occur in volcanic bodies that are interlayered with pyroclastic and fossiliferous Upper Cretaceus sedimentary rocks. The petrology and geochemistry of the basalts and alkali-feldspar rhyolites are constrained by microprobe analyses, major and trace element analyses including REE, and radiogenic and stable isotope data. Basalts that are mostly transformed into metabasalts (mainly spilites), are alkalic to subalkalic and their geochemical signatures, particularly trace element and REE patterns, are similar to recent back-arc basalts. Alkali-feldspar rhyolites have similar geochemical features to the associated cogenetic A-type granites, as shown by their large variation of Na2O and K2O (total 8–9%), very low MgO and CaO, and very high Zr contents ranging between 710 and 149 ppm. Geochemical data indicate an amphibole lherzolite source within a metasomatized upper mantle wedge, with the influence of upper mantle diapir with MORB signatures and continental crust contamination. Sr incorporated in the primary basalt melt had an initial 87Sr/86Sr ratio of 0.7039 indicating an upper mantle origin, whereas the 87Sr/86Sr ratio for the alkali-feldspar rhyolites and associated A-type granites is 0.7073 indicating an apparent continental crust origin. However, some other geochemical data favour the idea that they might have mainly originated by fractionation of primary mafic melt coupled with contamination of continental crust. Only one rhyolite sample appears to be the product of melting of continental crust. Geological and geodynamic data indicate that the basalt-rhyolite association was probably related to Alpine subduction processes in the Dinaridic Tethys which can be correlated with recent back-arc basins. The difference in geological and isotope ages between the bimodal basalt-rhyolite volcanism with A-type granite plutonism (72 Ma) and the final synkinematic S-type granite plutonism (48 Ma) can be taken as a lifetime of the presumed BARB system of the Dinaridic Tethys. Remnants of this presumed subduction zone can be traced for 300 km along the surrounding northernmost Dinarides.
Zusammenfassung ?Zur Geochemie und Geodynamik einer sp?tkretazischen bimodalen Vulkanit-Assoziation aus dem südlichen Pannonischen Becken, Slavoníen (Nordkroatien) In dieser Arbeit pr?sentieren wir petrologische und geochemische Daten einer bimodalen Basalt – Rhyolithsuite aus dem südlichen Pannonischen Becken in Slavonien (Kroatien), die mit A-Typ Graniten kretazischen Alters assoziiert ist. Die Basalte und Alkalifeldspat-Rhyolithe – sie sind stellenweise mit Ignimbriten vergesellschaftet – treten in vulkanischen K?rpern auf, die mit pyroklastischen und fossilführenden Sedimentgesteinen der Oberen Kreide wechsellagern. Die Petrologie und Geochemie der Basalte und Alkalifeldspat-Rhyolithe wird durch Mikrosondenuntersuchungen, Haupt- und Spurenelementgeochemie, inklusive der SEE, sowie durch radiogene und stabile Isotope eingegrenzt. Die Basalte, die gro?teils in Metabasalte (haupts?chlich Spilite) umgewandelt wurden, sind alkalisch bis subalkalisch und ihre geochemischen Charakteristika, haupts?chlich die Spurenelement- und die SEE- Patterns, sind ?hnlich rezenten Back-Arc Basalten. Die Alkalifeldspat-Rhyolithe zeigen geochemische Auml;hnlichkeiten mit den assoziierten cogenetischen A-Typ Graniten, was sich in der gro?en Variation der Na2O und K2O-Gehalte (in Summe 8–9%), in niedrigen MgO- und CaO- und in sehr hohen Zr- Gehalten, die zwischen 149 und 710 ppm liegen, widerspiegelt. Die geochemischen Daten zeigen eine Amphibolit-Lherzolithquelle innerhalb eines metasomatisierten Mantelkeils mit Einflüssen eines Diapirs des oberen Mantels mit MORB-Signatur und kontinentaler Krustenkontamination an. Sr der prim?ren Basalte hatte ein 87Sr/86Sr Initial von 0.7039, was eine Herkunft aus dem oberen Mantel anzeigt. Das 87/86Sr Verh?ltnis der Alkalifeldspat-Rhyolithe und der assoziierten A-Typ Granite von 0.7073 weist auf eine krustale Herkunft hin. Andere geochemische Daten allerdings favorisieren die Idee, da? diese durch Fraktionierung prim?rer mafischer Schmelzen, gekoppelt mit Kontamination durch kontinentale Kruste, entstanden. Nur eine Rhyolithprobe scheint ein tats?chliches Aufschmelzungsprodukt der kontinentalen Kruste zu sein. Die geologischen und geodynamischen Daten belegen, dass die Basalt–Rhyolithabfolge wahrscheinlich mit der alpidischen Subduktion in der Thetys der Dinariden, die mit rezenten Back-Arc Becken korreliert werden kann, in Beziehung zu setzen ist. Die Unterschiede zwischen den geologischen und Isotopenaltern des bimodalen Vulkanismus, mit A-Typ Granit-Plutonismus (72 Ma) und finalem synkinematischen S-Typ Granit-Plutonismus (48 Ma), repr?sentiert sehr wahrscheinlich die Dauer des vermuteten BARB Systems in der Thetys der Dinariden. Relikte der vermuteten Subduktionszone lassen sich über 300 km entlang der umgebenden n?rdlichsten Dinariden verfolgen.


Received March 7, 1997;/revised version accepted May 18, 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号