首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   14篇
  国内免费   1篇
测绘学   5篇
大气科学   4篇
地球物理   23篇
地质学   50篇
海洋学   7篇
天文学   12篇
自然地理   12篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2020年   8篇
  2019年   1篇
  2018年   4篇
  2017年   6篇
  2016年   9篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   5篇
  2011年   5篇
  2010年   8篇
  2009年   8篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2005年   8篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1988年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
11.
The Balderton Terrace marks a former course of the River Trent between Newark and the Lincoln Gap. The principal deposit, the Balderton Sand and Gravel, is interpreted as a braided river sediment. Ice wedge casts truncated by intraformational erosion surfaces at many levels indicate syndepositional permafrost. Remnant cover deposits overlying the Balderton Sand and Gravel include the partly aeolian Whisby Sand. Locally, both the upper part of the Balderton Sand and Gravel and the cover deposits exhibit features indicative of temperate climate pedogenesis. All these deposits are affected by subsequent cryoturbation. On the basis of these features and the geomorphological and topographical relationship to other terrace deposits of the area, the Balderton Sand and Gravel and Whisby Sand are regarded as post-Hoxnian and pre-lpswichian, i.e. Wolstonian. Electron spin resonance age determinations for fossil elephant teeth and amino acid analyses on molluscs from the Balderton Sand and Gravel suggest correlation with Oxygen Isotope Stage 6. The Balderton Sand and Gravel has yielded a cold-climate mammalian fauna dominated by woolly mammoth and woolly rhinoceros, though rarer species suggest periods of milder climate. Silts from channels near the base of the deposit have produced pollen, mollusc, ostracod and beetle assemblages also indicating a cold climate.  相似文献   
12.
Earlier piston-cylinder experiments in our laboratory produced a collection of mantle melting run products at 1.0 GPa that have now been analyzed by ion probe for selected REE, Ti, Cr, Rb, Sr, Y, Zr, and Nb. Natural starting materials were used and experiments were run in graphite-lined Pt capsules with the melt separated from the residual minerals into a layer of vitreous carbon spheres (VCS) to circumvent quench modification. The glass phase in 18 run products, representing melt percentages of ∼2-20 wt%, yielded excellent data that were inverted to yield the first estimates ever of clinopyroxene/melt distribution coefficients, Ds, derived from direct peridotite partial melting experiments. Uncertainties were estimated with a Monte Carlo method.For the REE and Y, these Ds were then compared to Ds calculated with the widely-used model of Wood and Blundy (1997) and the two sets overlap at the ±2σ level in 123 of 128 cases (∼96%). This indicates to us that: 1) the experiments analyzed here are well equilibrated with respect to major and trace element distributions, thus supporting the efficacy of the VCS technique and its variation involving diamond (e.g., Baker and Stolper, “Determining the composition of high-pressure mantle melts using diamond aggregates” [1994], Geochim. Cosmochim. Acta58, 2811-2827); 2) the model of Wood and Blundy (1997), calibrated largely on the basis of large melt fraction, inverse- or sandwich-type experiments, describes REE and Y partitioning during peridotite melting well, even very near the solidus; and it suggests that the cpx/melt Ds derived here for other elements, not modeled by the Wood and Blundy formulation, are probably also correct for peridotite melting to within their ±2σ uncertainties. Dsp/liq and Dcpx/liq values for Cr calculated directly from electron microprobe data decrease by about a factor of five with increasing temperature and melt percentage.The degree to which our experiments appear to have equilibrated seems at odds with recent measurements of the diffusivities of REE in diopside which suggest that relatively small percentages of our starting mineral grains should have equilibrated diffusively. Instead, we suggest that equilibration occurs much more rapidly through the processes of recrystallization and grain coarsening, accomplished through dissolution and reprecipitation. This suggestion is supported by the observation that our final grain sizes are typically 5-10 times larger than the ∼10 μm starting sizes, indicating that substantial mass transfer occurred in our experiments, probably mediated by the melt phase in which diffusion is faster.  相似文献   
13.
A new activity–composition model is presented for green (Mn3+‐absent) yoderite for use in the latest internally consistent thermodynamic data set used by THERMOCALC, for calculations primarily in MgO–Al2O3–SiO2–H2O–O system, where O is a proxy for Fe2O3. PT grids calculated with our model in the MASH and MASHO system feature invariant points and univariant reaction bundles that are consistent with existing experimental results. Using this new model, we have explored the stability of yoderite in whiteschists, a rare type of high‐pressure rock that conforms closely to the MASHO system. Using a series of calculated models in which composition varies, it is shown that yoderite stability is a function of bulk‐rock SiO2, MgO and Al2O3, where the most important component for stabilizing yoderite is a function of pressure and temperature. The rarity of yoderite in naturally occurring whiteschists is largely related to these compositional factors, with most whiteschists having rock compositions that are too SiO2‐rich and Al2O3‐poor to allow yoderite formation. However, in addition to compositional factors, the calculated PT stability field of yoderite occurs over thermal gradients that are generally too high to occur in modern‐style subduction zones. As nearly all known whiteschist occurrences are Phanerozoic in age, the near‐complete absence of yoderite in late Neoproterozoic–Phanerozoic whiteschists may be at least partially due to modern subduction systems failing to produce the hotter thermal gradients needed to stabilize yoderite. The provision of this new ax model for green yoderite allows for more rigorous PTX investigations of all whiteschists.  相似文献   
14.
Solander Basin is characterized by subduction initiation at the Pacific‐Australia plate boundary, where high biological productivity is found at the northern edge of the Antarctic Circumpolar Current. Sedimentary architecture results from tectonic influences on accommodation space, sediment supply and ocean currents (via physiography); and climate influence on ocean currents and biological productivity. We present the first seismic‐stratigraphic analysis of Solander Basin based on high‐fold seismic‐reflection data (voyage MGL1803, SISIE). Solander Trough physiography formed by Eocene rifting, but basinal strata are mostly younger than ca. 17 Ma, when we infer Puysegur Ridge formed and sheltered Solander Basin from bottom currents, and mountain growth onshore increased sediment supply. Initial inversion on the Tauru Fault started at ca. 15 Ma, but reverse faulting from 12 to ca. 8 Ma on both the Tauru and Parara Faults was likely associated with reorganization and formation of the subduction thrust. The new seabed topography forced sediment pathways to become channelized at low points or antecedent gorges. Since 5 Ma, southern Puysegur Ridge and Fiordland mountains spread out towards the east and Solander Anticline grew in response to ongoing subduction and growth of a slab. Solander Basin had high sedimentation rates because (1) it is sheltered from bottom currents by Puysegur Ridge; and (2) it has a mountainous land area that supplies sediment to its northern end. Sedimentary architecture is asymmetric due to the Subtropical Front, which moves pelagic and hemi‐pelagic sediment, including dilute parts of gravity flows, eastward and accretes contourites to the shelf south of Stewart Island. Levees, scours, drifts and ridges of folded sediment characterize western Solander Basin, whereas hemi‐pelagic drape and secondary gravity flows are found east of the meandering axial Solander Channel. The high‐resolution record of climate and tectonics that Solander Basin contains may yield excellent sites for future scientific ocean drilling.  相似文献   
15.
Seventeen basalt grindstone fragments from central Jordan's Karak Plateau were studied. Most of these artifacts are vesicular or amygdaloidal with calcite as the dominant mineral filling the voids. The major minerals are olivine (with iddingsite rims), plagioclase, clinopyroxene, magnetite, and apatite. Glass is present in some samples. One basalt fragment is quite different in appearance and composition and may have come from flows closer to the Dead Sea. Grindstone fragment compositions plot in the tephrite‐basanite and basalt fields. A plot of the concentrations of niobium, zirconium, and yttrium reveal that the sample compositions plot in the “within‐plate alkali basalt” and “within‐plate tholeiite” fields. The acquisition of basalts for preparing such implements appears to have been random. Some may have been introduced through trade and migration. Archaeological and environmental studies on the Karak Plateau are urgently needed because Jordan's population growth and economic development are destroying many sites and their environmental contexts. © 2004 Wiley Periodicals, Inc.  相似文献   
16.
Nutrient pollution from rivers, nonpoint source runoff, and nearly 100 wastewater discharges is a potential threat to the ecological health of Puget Sound with evidence of hypoxia in some basins. However, the relative contributions of loads entering Puget Sound from natural and anthropogenic sources, and the effects of exchange flow from the Pacific Ocean are not well understood. Development of a quantitative model of Puget Sound is thus presented to help improve our understanding of the annual biogeochemical cycles in this system using the unstructured grid Finite-Volume Coastal Ocean Model framework and the Integrated Compartment Model (CE-QUAL-ICM) water quality kinetics. Results based on 2006 data show that phytoplankton growth and die-off, succession between two species of algae, nutrient dynamics, and dissolved oxygen in Puget Sound are strongly tied to seasonal variation of temperature, solar radiation, and the annual exchange and flushing induced by upwelled Pacific Ocean waters. Concentrations in the mixed outflow surface layer occupying approximately 5–20?m of the upper water column show strong effects of eutrophication from natural and anthropogenic sources, spring and summer algae blooms, accompanied by depleted nutrients but high dissolved oxygen levels. The bottom layer reflects dissolved oxygen and nutrient concentrations of upwelled Pacific Ocean water modulated by mixing with biologically active surface outflow in the Strait of Juan de Fuca prior to entering Puget Sound over the Admiralty Inlet. The effect of reflux mixing at the Admiralty Inlet sill resulting in lower nutrient and higher dissolved oxygen levels in bottom waters of Puget Sound than the incoming upwelled Pacific Ocean water is reproduced. By late winter, with the reduction in algal activity, water column constituents of interest, were renewed and the system appeared to reset with cooler temperature, higher nutrient, and higher dissolved oxygen waters from the Pacific Ocean.  相似文献   
17.
18.
Isotopic heterogeneity within the solar nebula has been a long-standing issue. Studies on primitive chondrites and chondrite components for Ba, Sm, Nd, Mo, Ru, Hf, Ti, and Os yielded conflicting results, with some studies suggesting large-scale heterogeneity. Low-grade enstatite and Rumuruti chondrites represent the most extreme ends of the chondrite meteorites in terms of oxidation state, and might thus also present extremes if there is significant isotopic heterogeneity across the region of chondrite formation. Osmium is an ideal tracer because of its multiple isotopes generated by a combination of p-, r-, and s-process and, as a refractory element; it records the earliest stages of condensation.Some grade 3-4 enstatite and Rumuruti chondrites show similar deficits of s-process components as revealed by high-precision Os isotope studies in some low-grade carbonaceous and ordinary chondrites. Enstatite chondrites of grades 5-6 have Os isotopic composition identical within error to terrestrial and solar composition. This supports the view of digestion-resistant presolar grains, most likely SiC, as the major carrier of these anomalies. Destruction of presolar grains during parent body processing, which all high-grade enstatite chondrites, but also some low-grade chondrites seemingly underwent, makes the isotopically anomalous Os accessible for analysis. The magnitude of the anomalies is consistent with the presence of a few ppm of presolar SiC with a highly unusual isotopic composition, produced in a different stellar environment like asymptotic giant branch stars (AGB) and injected into the solar nebula. The presence of similar Os isotopic anomalies throughout all major chondrite groups implies that carriers of Os isotopic anomalies were homogeneously distributed in the solar nebula, at least across the formation region of chondrites.  相似文献   
19.
Triaxial shear testing of polished slickensided surfaces   总被引:1,自引:1,他引:0  
A series of consolidated-drained triaxial tests were performed on precut and polished clay specimens to measure their drained residual strength. Two soils were tested during this research program: Rancho Solano Clay and San Francisco Bay Mud. Specimens were tested using a specially modified triaxial compression device which was developed to minimize the effects of end-platen restraint on the measured strengths. Special attention was paid to the influence of changing specimen area and membrane effects during the test. Triaxial test results were compared with baseline measurements of drained residual shear strength that were made for each of the clay soils using Bromhead ring shear tests and polished-specimen direct shear tests. Residual strength values measured in the triaxial device were higher than the drained residual strengths measured in the Bromhead ring shear apparatus and the direct shear device, indicating that this test approach is more challenging than the use of direct shear tests conducted on polished slickensided surfaces. Comparison of single stage and multistage triaxial test data indicates that multistage triaxial testing may work well for specimens that fail along a well-defined plane, provided that careful attention is given to the effects of end platen restraint, membrane restraint, and changes in specimen area during shear.  相似文献   
20.
Here we present results from a suite of laboratory experiments that highlight the influence of channel sinuosity on the depositional mechanics of channelized turbidity currents. We released turbidity currents into three channels in an experimental basin filled with water and monitored current properties and the evolution of topography via sedimentation. The three channels were similar in cross-sectional geometry but varied in sinuosity. Results from these experiments are used to constrain the run-up of channelized turbidity currents on the outer banks of moderate to high curvature channel bends. We find that a current is unlikely to remain contained within a channel when the kinetic energy of a flow exceeds the potential energy associated with an elevation gain equal to the channel relief; setting an effective upper limit for current velocity. Next we show that flow through bends induces a vertical mixing that redistributes suspended sediment back into the interiors of depositional turbidity currents. This mixing counteracts the natural tendency for suspended sediment concentration and grain size to stratify vertically, thereby reducing the rate at which sediment is lost from a current via deposition. Finally, the laboratory experiments suggest that turbidity currents might commonly separate from channel sidewalls along the inner banks of bends. In some cases, sedimentation rates and patterns within the resulting separation zones are sufficient to construct bar forms that are attached to the channel sidewalls and represent an important mechanism of submarine channel filling. These bar forms have inclined strata that might be mistaken for the deposits of point bars and internal levees, even though the formation mechanism and its implications to channel history are different.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号