首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   11篇
  国内免费   2篇
测绘学   8篇
大气科学   27篇
地球物理   85篇
地质学   106篇
海洋学   9篇
天文学   32篇
自然地理   32篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   12篇
  2019年   9篇
  2018年   4篇
  2017年   6篇
  2016年   10篇
  2015年   12篇
  2014年   7篇
  2013年   18篇
  2012年   15篇
  2011年   15篇
  2010年   18篇
  2009年   20篇
  2008年   15篇
  2007年   16篇
  2006年   12篇
  2005年   5篇
  2004年   11篇
  2003年   4篇
  2002年   6篇
  2001年   10篇
  2000年   11篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1982年   1篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有299条查询结果,搜索用时 31 毫秒
31.
The chemical reactivity of uranium was investigated across estuarine gradients from two of the world’s largest river systems: the Amazon and Mississippi. Concentrations of dissolved (<0.45 μm) uranium (U) were measured in surface waters of the Amazon shelf during rising (March 1990), flood (June 1990) and low (November 1991) discharge regimes. The dissolved U content was also examined in surface waters collected across estuarine gradients of the Mississippi outflow region during April 1992, August 1993, and November (1993). All water samples were analyzed for U by isotope dilution inductively coupled plasma mass spectrometry (ICP-MS). In Amazon shelf surface waters uranium increased nonconservatively from about 0.01 μg I?1 at the river’s mouth to over 3 μg I?1 at the distal site, irrespective of river discharge stage. Observed large-scale U removal at salinities generally less than 15 implies a) that riverine dissolved U was extensively adsorbed by freshly-precipitated hydrous metal oxides (e.g., FeOOH, MnO2) as a result of flocculation and aggregation, and b) that energetic resuspension and reworking of shelf sediments and fluid muds on the Amazon shelf released a chemically reactive particle/colloid to the water column which can further scavenge dissolved U across much of the estuarine gradient. In contrast, the estuarine chemistry of U is inconclusive within surface waters of the Mississippi shelf-break region. U behavior is most likely controlled less by traditional sorption and/or desorption reactions involving metal oxides or colloids than by the river’s variable discharge regime (e.g., water parcel residence time during estuarine mixing, nature of particulates, sediment storage and resuspension in, the confined lower river), and plume dispersal. Mixing of the thin freshwater lens into ambient seawater is largely defined by wind-driven rather than physical processes. As a consequence, in the Mississippi outflow region uranium predominantly displays conservative behavior; removal is evident only during anomalous river discharge regimes. ‘Products-approach’ mixing experiments conducted during the Flood of 1993 suggest the importance of small particles and/or colloids in defining a depleted U versus salinity distribution.  相似文献   
32.
Cepheid parallaxes and the Hubble constant   总被引:1,自引:0,他引:1  
Revised Hipparcos parallaxes for classical Cepheids are analysed together with 10 Hubble Space Telescope ( HST )-based parallaxes. In a reddening-free V , I relation we find that the coefficient of log  P is the same within the uncertainties in our Galaxy as in the Large Magellanic Cloud (LMC), contrary to some previous suggestions. Cepheids in the inner region of NGC 4258 with near solar metallicities confirm this result. We obtain a zero-point for the reddening-free relation and apply it to the Cepheids in galaxies used by Sandage et al. to calibrate the absolute magnitudes of Type Ia supernova (SNIa) and to derive the Hubble constant. We revise their result for H 0 from 62 to 70 ± 5 km s−1 Mpc−1. The Freedman et al. value is revised from 72 to 76 ± 8 km s−1 Mpc−1. These results are insensitive to Cepheid metallicity corrections. The Cepheids in the inner region of NGC 4258 yield a modulus of 29.22 ± 0.03 (int.) compared with a maser-based modulus of 29.29 ± 0.15. Distance moduli for the LMC, uncorrected for any metallicity effects, are 18.52 ± 0.03 from a reddening-free relation in V , I ; 18.47 ± 0.03 from a period–luminosity relation at K ; 18.45 ± 0.04 from a period–luminosity–colour relation in J , K . Adopting a metallicity correction in V , I from Macri et al. leads to a true LMC modulus of 18.39 ± 0.05.  相似文献   
33.
We present a new software tool to enable astronomers to easily compare observations of emission-line ratios with those determined by photoionization and shock models, ITERA, the IDL Tool for Emission-line Ratio Analysis. This tool can plot ratios of emission lines predicted by models and allows for comparison of observed line ratios against grids of these models selected from model libraries associated with the tool. We provide details of the libraries of standard photoionization and shock models available with ITERA, and, in addition, present three example emission-line ratio diagrams covering a range of wavelengths to demonstrate the capabilities of ITERA. ITERA, and associated libraries, is available from http://www.brentgroves.net/itera.html.  相似文献   
34.
Brent A. Olson 《Geoforum》2010,41(3):447-456
This article examines the history of the Outdoor Recreation Resource Review Commission (ORRRC) in the United States between 1955 and 1963 and efforts to make recreational resources legible for federal governance. By drawing on insights from Critical Resource Geography, I highlight the ways that the ORRRC systematically accounted for and categorized recreational resources, creating a “patchwork landscape” that zoned outdoor recreational resources and promoted efficient use and rational resource conservation. I argue that these efforts required a negotiation between abstraction and an awareness of the situated nature of recreational landscapes.  相似文献   
35.
Many previous investigations of mean streamwater transit times (MTT) have been limited by an inability to quantify the MTT dynamics. Here, we draw on (1) a linear relation (r 2 = 0.97) between groundwater 3H/3He ages and dissolved silica (Si) concentrations, combined with (2) predicted streamwater Si concentrations from a multiple-regression relation (R 2 = 0.87) to estimate MTT at 5-min intervals for a 23-year time series of streamflow [water year (WY) 1986 through 2008] at the Panola Mountain Research Watershed, Georgia. The time-based average MTT derived from the 5-min data was ~8.4 ± 2.9 years and the volume-weighted (VW) MTT was ~4.7 years for the study period, reflecting the importance of younger runoff water during high flow. The 5-min MTTs are normally distributed and ranged from 0 to 15 years. Monthly VW MTTs averaged 7.0 ± 3.3 years and ranged from 4 to 6 years during winter and 8–10 years during summer. The annual VW MTTs averaged 5.6 ± 2.0 years and ranged from ~5 years during wet years (2003 and 2005) to >10 years during dry years (2002 and 2008). Stormflows are composed of much younger water than baseflows, and although stormflow only occurs ~17 % of the time, this runoff fraction contributed 39 % of the runoff during the 23-year study period. Combining the 23-year VW MTT (including stormflow) with the annual average baseflow for the period (~212 mm) indicates that active groundwater storage is ~1,000 mm. However, the groundwater storage ranged from 1,040 to 1,950 mm using WY baseflow and WY VW MTT. The approach described herein may be applicable to other watersheds underlain by granitoid bedrock, where weathering is the dominant control on Si concentrations in soils, groundwater, and streamwater.  相似文献   
36.
At Airedale Reef, western North Island, New Zealand, a ca. 4 m thick volcanogenic debris avalanche deposit has facilitated the preservation of an enveloping sequence of peats with interbedded andesitic tephras spanning marine isotope (MIS) 5. The sequence closely overlies a wave‐cut terrace correlated to MIS 5e and, in turn, is overlain by andic beds with tephra interbeds including the Rotoehu and Kawakawa tephras deposited during early MIS 3 and mid‐MIS 2, respectively. Pollen analysis of the organic sequence shows a coherent pattern of fluctuating climate for the Last Interglacial–Last Glacial transition that corresponds with marine isotope stratigraphy and supports the contention that orbital variations were a primary factor in late Quaternary southern mid‐latitude climate change. A five‐stage subdivision of MIS 5 is clearly recognised, with marine isotope substage (MISS) 5b drier than MISS 5d, and the cooling transition from 5a to MIS 4 also may have been comparatively dry and characterised by natural fire, perhaps associated with volcanism. Several other examples of volcanic impact on vegetation and the landscape are evident. The Airedale Reef sequence exhibits strong similarities with fragmentary MIS 5 pollen records preserved elsewhere in New Zealand and enables the proxy record of southern mid‐latitude climatic variability during the Last Interglacial–Glacial cycle to be extended. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
37.
It is widely recognised that the acquisition of high‐resolution palaeoclimate records from southern mid‐latitude sites is essential for establishing a coherent picture of inter‐hemispheric climate change and for better understanding of the role of Antarctic climate dynamics in the global climate system. New Zealand is considered to be a sensitive monitor of climate change because it is one of a few sizeable landmasses in the Southern Hemisphere westerly circulation zone, a critical transition zone between subtropical and Antarctic influences. New Zealand has mountainous axial ranges that amplify the climate signals and, consequently, the environmental gradients are highly sensitive to subtle changes in atmospheric and oceanic conditions. Since 1995, INTIMATE has, through a series of international workshops, sought ways to improve procedures for establishing the precise ages of climate events, and to correlate them with high precision, for the last 30 000 calendar years. The NZ‐INTIMATE project commenced in late 2003, and has involved virtually the entire New Zealand palaeoclimate community. Its aim is to develop an event stratigraphy for the New Zealand region over the past 30 000 years, and to reconcile these events against the established climatostratigraphy of the last glacial cycle which has largely been developed from Northern Hemisphere records (e.g. Last Glacial Maximum (LGM), Termination I, Younger Dryas). An initial outcome of NZ‐INTIMATE has been the identification of a series of well‐dated, high‐resolution onshore and offshore proxy records from a variety of latitudes and elevations on a common calendar timescale from 30 000 cal. yr BP to the present day. High‐resolution records for the last glacial coldest period (LGCP) (including the LGM sensu stricto) and last glacial–interglacial transition (LGIT) from Auckland maars, Kaipo and Otamangakau wetlands on eastern and central North Island, marine core MD97‐2121 east of southern North Island, speleothems on northwest South Island, Okarito wetland on southwestern South Island, are presented. Discontinuous (fragmentary) records comprising compilations of glacial sequences, fluvial sequences, loess accumulation, and aeolian quartz accumulation in an andesitic terrain are described. Comparisons with ice‐core records from Antarctica (EPICA Dome C) and Greenland (GISP2) are discussed. A major advantage immediately evident from these records apart from the speleothem record, is that they are linked precisely by one or more tephra layers. Based on these New Zealand terrestrial and marine records, a reasonably coherent, regionally applicable, sequence of climatically linked stratigraphic events over the past 30 000 cal. yr is emerging. Three major climate events are recognised: (1) LGCP beginning at ca. 28 000 cal. yr BP, ending at Termination I, ca. 18 000 cal. yr BP, and including a warmer and more variable phase between ca. 27 000 and 21 000 cal. yr BP, (2) LGIT between ca. 18 000 and 11 600 cal. yr BP, including a Lateglacial warm period from ca. 14 800 to 13 500 cal. yr BP and a Lateglacial climate reversal between ca. 13 500 and 11 600 cal. yr BP, and (3) Holocene interglacial conditions, with two phases of greatest warmth between ca. 11 600 and 10 800 cal. yr BP and from ca. 6 800 to 6 500 cal. yr BP. Some key boundaries coincide with volcanic tephras. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
38.
The North American Laurentian Great Lakes hold nearly 20 % of the earth’s unfrozen fresh surface water and have a length of coastline, and a coastal population, comparable to frequently-studied marine coasts. The surface water elevations of the Great Lakes, in particular, are an ideal metric for understanding impacts of climate change on large hydrologic systems, and for assessing adaption measures for absorbing those impacts. In light of the importance of the Great Lakes to the North American and global economies, the Great Lakes and the surrounding region also serve as an important benchmark for hydroclimate research, and offer an example of successful adaptive management under changing climate conditions. Here, we communicate some of the important lessons to be learned from the Great Lakes by examining how the coastline, water level, and water budget dynamics of the Great Lakes relate to other large coastal systems, along with implications for water resource management strategies and climate scenario-derived projections of future conditions. This improved understanding fills a critical gap in freshwater and marine global coastal research.  相似文献   
39.
The High-Resolution Coronal Imager (Hi-C) was flown on a NASA sounding rocket on 11 July 2012. The goal of the Hi-C mission was to obtain high-resolution (≈?0.3?–?0.4′′), high-cadence (≈?5 seconds) images of a solar active region to investigate the dynamics of solar coronal structures at small spatial scales. The instrument consists of a normal-incidence telescope with the optics coated with multilayers to reflect a narrow wavelength range around 19.3 nm (including the Fe xii 19.5-nm spectral line) and a 4096×4096 camera with a plate scale of 0.1′′?pixel?1. The target of the Hi-C rocket flight was Active Region 11520. Hi-C obtained 37 full-frame images and 86 partial-frame images during the rocket flight. Analysis of the Hi-C data indicates the corona is structured on scales smaller than currently resolved by existing satellite missions.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号