首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
  国内免费   1篇
地球物理   9篇
地质学   18篇
海洋学   4篇
综合类   4篇
自然地理   2篇
  2021年   4篇
  2018年   1篇
  2014年   4篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2004年   3篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1981年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
31.
Esturies throughout much of the South Atlantic Bight (southeastern U.S.) have been considered to be relatively pristine, but are now experiencing elevated concentrations of both organic and inorganic nutrients. As is true in many parts of the world, this eutrophication is correlated with coastal population growth. These estuaries have been assumed to be immune from extended hypoxia, in large part because they are well mixed and do not generally exhibit the water column stratification that is traditionally associated with low concentrations of dissolved oxygen. data presented here show long-term (19 yr) decreases in dissolved oxygen in surface waters of the Skidaway estuary, a pattern that is occurring throughout coastal Georgia. More limited data from bottom waters exhibit the same trend. The decreases in dissolved oxygen occurred at the same time as observed increases in inorganic and organic nutrients and in bacteria concentrations, implying an increase in heterotrophic activity. These observations suggest that traditional paradigms long applied to stratified estuaries, wherein the cycle that leads to hypoxia is initiated by the uptake of inorganic nutrients by autotrophs that are then decomposed below the pycnocline, may need revision for well-mixed estuaries. Heterotrophic community metabolism, stimulated by anthropogenic loading of organic and inorganic nutrients, can overwhelm even vigorous vertical mixing and horizontal exchange to gradually cause declining oxygen concentrations and eventually hypoxia.  相似文献   
32.
A study of the problems encountered in nephelometric determinations of suspended sediment loads in the Chesapeake Bay estuary has led to development of a technique which uses nephelometer readings as a guide for sampling at vertical profiles in an estuary. This permits optimum sampling for concentration profiles and allows one to use nephelometer/load ratios to characterize particles.  相似文献   
33.
The natural aging process of Chesapeake Bay and its tributary estuaries has been accelerated by human activities around the shoreline and within the watershed, increasing sediment and nutrient loads delivered to the bay. Riverine nutrients cause algal growth in the bay leading to reductions in light penetration with consequent declines in sea grass growth, smothering of bottom-dwelling organisms, and decreases in bottom-water dissolved oxygen as algal blooms decay. Historically, bay waters were filtered by oysters, but declines in oyster populations from overfishing and disease have led to higher concentrations of fine-sediment particles and phytoplankton in the water column. Assessments of water and biological resource quality in Chesapeake Bay and tributaries, such as the Potomac River, show a continual degraded state. In this paper, we pay tribute to Owen Bricker’s comprehensive, holistic scientific perspective using an approach that examines the connection between watershed and estuary. We evaluated nitrogen inputs from Potomac River headwaters, nutrient-related conditions within the estuary, and considered the use of shellfish aquaculture as an in-the-water nutrient management measure. Data from headwaters, nontidal, and estuarine portions of the Potomac River watershed and estuary were analyzed to examine the contribution from different parts of the watershed to total nitrogen loads to the estuary. An eutrophication model was applied to these data to evaluate eutrophication status and changes since the early 1990s and for comparison to regional and national conditions. A farm-scale aquaculture model was applied and results scaled to the estuary to determine the potential for shellfish (oyster) aquaculture to mediate eutrophication impacts. Results showed that (1) the contribution to nitrogen loads from headwater streams is small (about 2 %) of total inputs to the Potomac River Estuary; (2) eutrophic conditions in the Potomac River Estuary have improved in the upper estuary since the early 1990s, but have worsened in the lower estuary. The overall system-wide eutrophication impact is high, despite a decrease in nitrogen loads from the upper basin and declining surface water nitrate nitrogen concentrations over that period; (3) eutrophic conditions in the Potomac River Estuary are representative of Chesapeake Bay region and other US estuaries; moderate to high levels of nutrient-related degradation occur in about 65 % of US estuaries, particularly river-dominated low-flow systems such as the Potomac River Estuary; and (4) shellfish (oyster) aquaculture could remove eutrophication impacts directly from the estuary through harvest but should be considered a complement—not a substitute—for land-based measures. The total nitrogen load could be removed if 40 % of the Potomac River Estuary bottom was in shellfish cultivation; a combination of aquaculture and restoration of oyster reefs may provide larger benefits.  相似文献   
34.
This special volume of aquatic geochemistry is dedicated to the memory of Owen Peterson Bricker III (1936–2011) and serves as a tribute to his life and career. Owen had a distinguished and productive research career in both academics at Johns Hopkins University (Fig. 1) and as a public servant with the Maryland Geological Survey, the US Environmental Protection Agency, and the US Geological Survey. He was a pioneer and leader in aqueous geochemistry, who applied a study approach that quantified mineral weathering reactions and equilibrium thermodynamic relations to better understand the chemical evolution of stream water in small watersheds. He will be especially remembered for his efforts to establish rigorous field studies in small catchments around the United States as a means of quantifying the sources of acid-neutralizing capacity that affect the chemical status and biological health of natural waters.
Fig. 1
Owen in a Johns Hopkins University laboratory in the early years (~1965, note the tie!)  相似文献   
35.
36.
Trends in precipitation and surface water chemistry at a network of 15 small watersheds (< 10 km2) in the USA were evaluated using a statistical test for monotonic trends (the seasonal Kendall test) and a graphical smoothing technique for the visual identification of trends. Composite precipitation samples were collected weekly and surface water samples were collected at least monthly. Concentrations were adjusted before trend analysis, by volume for precipitation samples and by flow for surface water samples. A relation between precipitation and surface water trends was not evident either for individual inorganic solutes or for solute combinations, such as ionic strength, at most sites. The only exception was chloride, for which there was a similar trend at 60% of the sites. The smoothing technique indicated that short-term patterns in precipitation chemistry were not reflected in surface waters. The magnitude of the short-term variations in surface water concentration was generally larger than the overall long-term trend, possibly because flow adjustment did not adequately correct for climatic variability. Detecting the relation between precipitation and surface water chemistry trends may be improved by using a more powerful sampling strategy and by developing better methods of concentration adjustment to remove the effects of natural variation in surface waters.  相似文献   
37.
This paper presents a multilayered ecosystem modelling approach that combines the simulation of the biogeochemistry of a coastal ecosystem with the simulation of the main forcing functions, such as catchment loading and aquaculture activities. This approach was developed as a tool for sustainable management of coastal ecosystems. A key feature is to simulate management scenarios that account for changes in multiple uses and enable assessment of cumulative impacts of coastal activities. The model was applied to a coastal zone in China with large aquaculture production and multiple catchment uses, and where management efforts to improve water quality are under way. Development scenarios designed in conjunction with local managers and aquaculture producers include the reduction of fish cages and treatment of wastewater. Despite the reduction in nutrient loading simulated in three different scenarios, inorganic nutrient concentrations in the bay were predicted to exceed the thresholds for poor quality defined by Chinese seawater quality legislation. For all scenarios there is still a Moderate High to High nutrient loading from the catchment, so further reductions might be enacted, together with additional decreases in fish cage culture. The model predicts that overall, shellfish production decreases by 10%–28% using any of these development scenarios, principally because shellfish growth is being sustained by the substances to be reduced for improvement of water quality. The model outcomes indicate that this may be counteracted by zoning of shellfish aquaculture at the ecosystem level in order to optimize trade-offs between productivity and environmental effects. The present case study exemplifies the value of multilayered ecosystem modelling as a tool for Integrated Coastal Zone Management and for the adoption of ecosystem approaches for marine resource management. This modelling approach can be applied worldwide, and may be particularly useful for the application of coastal management regulation, for instance in the implementation of the European Marine Strategy Framework Directive.  相似文献   
[首页] « 上一页 [1] [2] [3] 4
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号