首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1238篇
  免费   23篇
  国内免费   4篇
测绘学   25篇
大气科学   89篇
地球物理   265篇
地质学   423篇
海洋学   120篇
天文学   222篇
综合类   4篇
自然地理   117篇
  2020年   17篇
  2019年   9篇
  2018年   17篇
  2017年   11篇
  2016年   25篇
  2015年   23篇
  2014年   29篇
  2013年   52篇
  2012年   44篇
  2011年   54篇
  2010年   41篇
  2009年   55篇
  2008年   54篇
  2007年   51篇
  2006年   40篇
  2005年   43篇
  2004年   57篇
  2003年   51篇
  2002年   49篇
  2001年   26篇
  2000年   24篇
  1999年   18篇
  1998年   12篇
  1997年   22篇
  1996年   18篇
  1995年   27篇
  1994年   12篇
  1993年   19篇
  1992年   19篇
  1991年   18篇
  1990年   11篇
  1989年   14篇
  1988年   13篇
  1987年   19篇
  1986年   17篇
  1985年   20篇
  1984年   30篇
  1983年   28篇
  1982年   18篇
  1981年   18篇
  1980年   14篇
  1979年   14篇
  1978年   13篇
  1977年   14篇
  1976年   13篇
  1975年   10篇
  1974年   7篇
  1973年   12篇
  1972年   7篇
  1970年   11篇
排序方式: 共有1265条查询结果,搜索用时 894 毫秒
51.
Quantifying the proportion of the river hydrograph derived from the different hydrological pathways is essential for understanding the behaviour of a catchment. This paper describes a new approach using the output from master recession curve analysis to inform a new algorithm based on the Lyne and Hollick ‘one‐parameter’ signal analysis filtering algorithm. This approach was applied to six catchments (including two subcatchments of these) in Ireland. The conceptual model for each catchment consists of four main flow pathways: overland flow, interflow, shallow groundwater and deep groundwater. The results were compared with those of the master recession curve analysis, a recharge coefficient approach developed in Ireland and the semi‐distributed, lumped and deterministic hydrological model Nedbør‐Afstrømings‐Model. The new algorithm removes the ‘free variable’ aspect that is typically associated with filtering algorithms and provides a means of estimating the contribution of each pathway that is consistent with the results of hydrograph separation in catchments that are dominated by quick response pathways. These types of catchments are underlain by poorly productive aquifers that are not capable of providing large baseflows in the river. Such aquifers underlie over 73% of Ireland, ensuring that this new algorithm is applicable in the majority of catchments in Ireland and potentially in those catchments internationally that are strongly influenced by the quick‐responding hydrological pathways. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
52.
53.
Time series of hydrogen and oxygen stable isotope ratios (δ2H and δ18O) in rivers can be used to quantify groundwater contributions to streamflow, and timescales of catchment storage. However, these isotope hydrology techniques rely on distinct spatial or temporal patterns of δ2H and δ18O within the hydrologic cycle. In New Zealand, lack of understanding of spatial and temporal patterns of δ2H and δ18O of river water hinders development of regional and national-scale hydrological models. We measured δ2H and δ18O monthly, together with river flow rates at 58 locations across New Zealand over a two-year period. Results show: (a) general patterns of decreasing δ2H and δ18O with increasing latitude were altered by New Zealand's major mountain ranges; δ2H and δ18O were distinctly lower in rivers fed from higher elevation catchments, and in eastern rain-shadow areas of both islands; (b) river water δ2H and δ18O values were partly controlled by local catchment characteristics (catchment slope, PET, catchment elevation, and upstream lake area) that influence evaporation processes; (c) regional differences in evaporation caused the slope of the river water line (i.e., the relationship between δ2H and δ18O in river water) for the (warmer) North Island to be lower than that of the (cooler, mountain-dominated) South Island; (d) δ2H seasonal offsets (i.e., the difference between seasonal peak and mean values) for individual sites ranged from 0.50‰ to 5.07‰. Peak values of δ18O and δ2H were in late summer, but values peaked 1 month later at the South Island sites, likely due to greater snow-melt contributions to streamflow. Strong spatial differences in river water δ2H and δ18O caused by orographic rainfall effects and evaporation may inform studies of water mixing across landscapes. Generally distinct seasonal isotope cycles, despite the large catchment sizes of rivers studied, are encouraging for transit time analysis applications.  相似文献   
54.
We performed an in-depth literature survey to identify the most popular data mining approaches that have been applied for raster mapping of ecological parameters through the use of Geographic Information Systems (GIS) and remotely sensed data. Popular data mining approaches included decision trees or “data mining” trees which consist of regression and classification trees, random forests, neural networks, and support vector machines. The advantages of each data mining approach as well as approaches to avoid overfitting are subsequently discussed. We also provide suggestions and examples for the mapping of problematic variables or classes, future or historical projections, and avoidance of model bias. Finally, we address the separate issues of parallel processing, error mapping, and incorporation of “no data” values into modeling processes. Given the improved availability of digital spatial products and remote sensing products, data mining approaches combined with parallel processing potentials should greatly improve the quality and extent of ecological datasets.  相似文献   
55.
56.
57.
58.
59.
Although most of the world's uranium exists as pitchblende or uraninite, this mineral can be weathered to a great variety of secondary uranium minerals, most containing the uranyl cation. Anthropogenic uranium compounds can also react in the environment, leading to spatial–chemical alterations that could be useful for nuclear forensics analyses. Soft X‐ray absorption spectroscopy (XAS) has the advantages of being non‐destructive, element‐specific and sensitive to electronic and physical structure. The soft X‐ray probe can also be focused to a spot size on the order of tens of nanometres, providing chemical information with high spatial resolution. However, before XAS can be applied at high spatial resolution, it is necessary to find spectroscopic signatures for a variety of uranium compounds in the soft X‐ray spectral region. To that end, we collected the near edge X‐ray absorption fine structure (NEXAFS) spectra of a variety of common uranyl‐bearing minerals, including uranyl carbonates, oxyhydroxides, phosphates and silicates. We find that uranyl compounds can be distinguished by class (carbonate, oxyhydroxide, phosphate or silicate) based on their oxygen K‐edge absorption spectra. This work establishes a database of reference spectra for future spatially resolved analyses. We proceed to show scanning X‐ray transmission microscopy (STXM) data from a schoepite particle in the presence of an unknown contaminant.  相似文献   
60.
A transient finite difference groundwater flow model has been calibrated for the Nasia sub-catchment of the White Volta Basin. This model has been validated through a stochastic parameter randomization process and used to evaluate the impacts of groundwater abstraction scenarios on resource sustainability in the basin. A total of 1500 equally likely model realizations of the same terrain based on 1500 equally likely combinations of the data of the key aquifer input parameters were calibrated and used for the scenario analysis. This was done to evaluate model non-uniqueness arising from uncertainties in the key aquifer parameters especially hydraulic conductivity and recharge by comparing the realizations and statistically determining the degree to which they differ from each other. Parameter standard deviations, computed from the calibrated data of the key parameters of hydraulic conductivity and recharge, were used as a yardstick for evaluating model non-uniqueness. All model realizations suggest horizontal hydraulic conductivity estimates in the range of 0.03–78.4 m/day, although over 70 % of the area has values in the range of 0.03–14 m/day. Low standard deviations of the horizontal hydraulic conductivity estimates from the 1500 solutions suggest that this range adequately reflects the properties of the material in the terrain. Lateral groundwater inflows and outflows appear to constitute significant components of the groundwater budgets in the terrain, although estimated direct vertical recharge from precipitation amounts to about 7 % of annual precipitation. High potential for groundwater development has been suggested in the simulations, corroborating earlier estimates of groundwater recharge. Simulation of groundwater abstraction scenarios suggests that the domain can sustain abstraction rates of up to 200 % of the current estimated abstraction rates of 12,960 m3/day under the current recharge rates. Decreasing groundwater recharge by 10 % over a 20-year period will not significantly alter the results of this abstraction scenario. However, increasing abstraction rates by 300 % over the period with decreasing recharge by 10 % will lead to drastic drawdowns in the hydraulic head over the entire terrain by up to 6 m and could cause reversals of flow in most parts of the terrain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号