首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42078篇
  免费   1029篇
  国内免费   605篇
测绘学   1088篇
大气科学   3631篇
地球物理   8775篇
地质学   14322篇
海洋学   3630篇
天文学   9503篇
综合类   143篇
自然地理   2620篇
  2021年   300篇
  2020年   371篇
  2019年   347篇
  2018年   879篇
  2017年   842篇
  2016年   1232篇
  2015年   866篇
  2014年   1140篇
  2013年   2314篇
  2012年   1364篇
  2011年   1752篇
  2010年   1497篇
  2009年   2070篇
  2008年   1783篇
  2007年   1661篇
  2006年   1559篇
  2005年   1412篇
  2004年   1344篇
  2003年   1273篇
  2002年   1189篇
  2001年   1057篇
  2000年   1055篇
  1999年   970篇
  1998年   887篇
  1997年   914篇
  1996年   757篇
  1995年   698篇
  1994年   606篇
  1993年   546篇
  1992年   529篇
  1991年   505篇
  1990年   525篇
  1989年   441篇
  1988年   418篇
  1987年   489篇
  1986年   458篇
  1985年   542篇
  1984年   606篇
  1983年   580篇
  1982年   541篇
  1981年   485篇
  1980年   449篇
  1979年   413篇
  1978年   426篇
  1977年   376篇
  1976年   332篇
  1975年   345篇
  1974年   347篇
  1973年   356篇
  1972年   208篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Benton C. Clark 《Icarus》1978,34(3):645-665
Converging lines of evidence suggest that a significant portion of the Martian surface fines may consist of salts and smectite clays. Salts can form stoichiometric hydrates as well as eutectic solutions with depressed freezing points; clays contain bound water of constitution and adsorb significant quantities of water from the vapor phase. The formation of ice may be suppressed by these minerals in some regions on Mars, and their presence in abundance would imply important consequences for atmospheric and geologic processes and the prospects for exobiology.  相似文献   
992.
The idea of a missing planet between Mars and Jupiter has been with us since the formulation of the Titius-Bode law. The discovery of the asteroid belt in that location led to speculation about a planetary breakup event. Both ideas remained conjectures until Ovenden's finding in 1972, from which it could be derived that the mass of the missing planet was about 90 Earth masses and that its breakup was astronomically recent. Apparently much of that mass was blown out of the solar system during the disruption of the planet. Because of the action of planetary perturbations, only two types of orbits of surviving fragments could remain at present-asteroid orbits and once-around very-long-period elliptical orbits. Objects in the latter type of orbit are known to exist-the very-long-period comets. A large number of these are on elliptical trajectories with periods of revolution of 5 million years; yet they are known to have made no more than one revolution in an orbit passing close to the Sun. By direct calculation it is possible to predict the distribution of the orbital elements of objects moving on long-period ellipses which might have originated in a breakup event in the asteroid belt 5 million years ago. The comet orbits have the predicted distribution in every case where a measure is possible. Some of the distribution anomalies, such as a bias in the directions of perihelion passage, are statistically strong and would be difficult to explain in any other uncontrived way. In addition, a relative deficiency of orbits with perihelia less than 1 AU indicates that the comets must have had small perihelion distances since their origin, rather than that they have been perturbed into small perihelion orbits from a distant “cloud” of comets by means of stellar encounters. The comet orbital data lead to the conclusion that all comets originated in a breakup event in the asteroid belt (5.5±0.6) × 106 years ago. Asteroid and meteoritic evidence can now be interpreted in a way which not only is supportive but also provides fresh insights into understanding their physical, chemical, and dynamical properties. Particularily noteworthy are the young cosmic-ray exposure ages of meteorites, evidence of a previous high-temperature/pressure environment and of chemical differentiation of the parent body, and compositional similarities among comets, asteroids, and meteorites. Certain “explosion signatures” in asteroid orbital element distributions are likewise indicative. Tektites may also have originated in the same event; but if so, there are important implications regarding the absolute accuracy of certain geological dating methods. Little is known about possible planetary breakup mechanisms of the requisite type, though some speculations are offered. In any case, the asteroid belt is an existing fact; and the arguments presented here that a large planet did disintegrate 5 million years ago must be judged on their merits, even in the absence of a suitable theory of planetary explosions.  相似文献   
993.
We have measured the shape and absolute value of Venus' reflectivity spectrum in the 1.2-to 4.0-μm spectral region with a circular variable filter wheel spectrometer having a spectral resolution of 1.5%. The instrument package was mounted on the 91-cm telescope of NASA Ames Kuiper Airborne Observatory, and the measurements were obtained at an altitude of about 41,000 feet, when Venus had a phase angle of 86°. Comparing these spectra with synthetic spectra generated with a multiple-scattering computer code, we infer a number of properties of the Venus clouds. We obtain strong confirmatory evidence that the clouds are made of a water solution of sulfuric acid in their top unit optical depth and find that the clouds are made of this material down to an optical depth of at least 25. In addition, we determine that the acid concentration is 84 ± 2% H2SO4 by weight in the top unit optical depth, that the total optical depth of the clouds is 37.5 ± 12.5, and that the cross-sectional weighted mean particle radius lies between 0.5 and 1.4 μm in the top unit optical depth of the clouds. These results have been combined with a recent determination of the location of the clouds' bottom boundary [Marov et al., Cosmic Res.14, 637–642 (1976)] to infer additional properties about Venus' atmosphere. We find that the average volume mixing ratio of H2SO4 and H2O contained in the cloud material both equal approximately 2× 10?6. Employing vapor pressure arguments, we show that the acid concentration equals 84 ± 6% at the cloud bottom and that the water vapor mixing ratio beneath the clouds lies between 6 × 10?4 and 10?2.  相似文献   
994.
Observations of the April 8, 1976 occultation of ? Gem by Mars made at the Agassiz Station of the Harvard College Observatory have been analyzed to yield temperature profiles of the Martian atmosphere for number densities between 1013 and 1015 cm?3. Pronounced wavelike structure is evident in both immersion and emersion profiles, with a peak-tto-peak variation of up to 50°K and a vertical scale of 20 km.  相似文献   
995.
An analysis was made of a complex large amplitude Pc 4 micropulsation, of four hours duration around local noon, observed at five ground stations in the United Kingdom (2.4? L ?3.8). The final pulsation waveform was shown to be the results of the superposition of wave packets of different periods. The meridional variation of the amplitude of the different period wavepackets was consistent with their being fundamental “toroidal” field line resonances within the plasmasphere, rotated through 90° in their transmission through the ionosphere in accordance with recent theoretical predictions. Other predicted ionospheric effects, such as the loss of the sense-of-polarization reversal across the amplitude maximum, were apparent in the meridional variation of the polarization characteristics.  相似文献   
996.
We have re-examined the prospects of HOCl as an inert reservoir for atmospheric chlorine in the light of new theoretical calculations and available experimental measurements of its photodissociation cross-sections. The theoretical calculations and most recent laboratory studies imply that the broad maxima 3200 Å observed in two other experimental spectra may not belong to HOCl. On the basis of this implication HOCl could have a long lifetime against photodissociation in the stratosphere, and could, thereby, become a reservoir for atmospheric chlorine comparable to ClONO2 or even HCl. In this capacity HOCl could reduce the predicted ozone destruction due to any given level of total chlorine burden. We have also examined the difficulties in laboratory measurements of the HOCl absorption spectrum with particular emphasis on identifying the impurities which may be present in the experimental system. It appears that specialized new experiments are needed to clearly establish the nature and strength of HOCl absorption in the neighbourhood of 3200 Å. Some refinements in the theoretical calculations also seem desirable. In view of the difficulties involved in the laboratory determination of HOCl photodissociation cross-sections, it is suggested that a search for possible stratospheric HOCl by atmospheric spectroscopists would be worthwhile.  相似文献   
997.
The dissociation of N2 by electron impact and by e.u.v. photo-absorption is studied, and it is shown that the forbidden predissociation of the numerous 1Πu and 1Σu+ valence and Rydberg states of N2 in the 11–24eV energy range is the dominant mechanism for N atom production. By measuring the absolute emission cross sections for the e.u.v. singlet bands of N2 and by using the generalized oscillator strength data of Lassettre (1974), it has been possible to construct a detailed model of the total N2 dissociation cross section which is in good agreement with the measurements of Winters (1966) and Niehaus (1967) and provides some insights into the maximum possible N(2D) yield from dissociative excitation. The total cross section for exciting N2 e.u.v. radiation in the 800Å–1100Å wavelength range has been measured and found to have a value of 3.4 ×10?17 cm2 at 100 eV under optically thin conditions. Although this result implies that large fluxes of e.u.v. photons should be excited in auroral substorms and in the airglow, they are not observed, and we show that this development is a consequence of radiation entrapment and predissociation. The total cross section for dissociating N2 by electron impact is given for optically thin and thick media. And some questions concerning the energy budget of a magnetospheric storm which are raised by these results, are discussed.  相似文献   
998.
C. Mercier 《Solar physics》1976,46(2):499-500
On 1 July 1971, about ten groups of type III bursts were observed with high time resolution (10?1 sec) with the 169 MHz Nançay radioheliograph. Each group consists of two or several bursts, appearing successively from E to W in all cases, with very short delays. The analysis of successive E-W profiles allowed us to show that, for each event:
  1. the delay between maximum times of the sources was in the range 0.3–0.8 s and that their time profiles were very similar.
  2. the mutual distance between sources was ~1.5 × 105 km.
Explanations by simultaneous emission at the fundamental and harmonic of the local plasma frequency, or by reflexion of electromagnetic radiations at boundary at a dense region are shown to be inconsistent with the observations. We suggest that distinct exciters are simultaneously accelerated at low levels in very close regions and propagate upward along very widely diverging magnetic field lines. This divergence could be related to the existence of large scale magnetic connexions in the corona as revealed by XUV observations. We stress the point that this kind of structure in type III bursts groups, visible only with high time resolution, may have led in the past to erroneous conclusions concerning diameter and decay time of type III bursts because of both spatial and temporal overlapping.  相似文献   
999.
1000.
Previous observations of spatially-resolved vertical velocity variations in ten lines of Fe i spanning the height range 0 h 1000 km are re-analyzed using velocity weighting functions. The amplitudes and scale heights of granular and oscillatory velocities are determined, as well as those of the remaining unresolved velocities. I find that the optimal representation of the amplitude of the outward-decreasing granular velocities is an exponentially decreasing function of height, with a scale height of 150 km and a velocity at zero height of 1.27 km s–1. The optimal representation of the same quantities for oscillatory velocities is an exponential increase with height, with a scale height of 1100 km and a velocity at zero height of 0.35 km s–1. The remaining unresolved velocities decrease with height, with a scale height of 380 km and a velocity at zero height of 2.3 km s–1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号