首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30888篇
  免费   7850篇
  国内免费   11888篇
测绘学   5469篇
大气科学   4750篇
地球物理   6265篇
地质学   20074篇
海洋学   6317篇
天文学   459篇
综合类   2616篇
自然地理   4676篇
  2024年   291篇
  2023年   764篇
  2022年   1914篇
  2021年   2432篇
  2020年   1895篇
  2019年   2330篇
  2018年   2027篇
  2017年   1789篇
  2016年   1883篇
  2015年   2129篇
  2014年   2104篇
  2013年   2623篇
  2012年   2788篇
  2011年   2922篇
  2010年   2896篇
  2009年   2754篇
  2008年   2724篇
  2007年   2534篇
  2006年   2584篇
  2005年   2166篇
  2004年   1462篇
  2003年   1158篇
  2002年   1061篇
  2001年   993篇
  2000年   843篇
  1999年   439篇
  1998年   178篇
  1997年   146篇
  1996年   112篇
  1995年   58篇
  1994年   69篇
  1993年   57篇
  1992年   72篇
  1991年   38篇
  1990年   47篇
  1989年   28篇
  1988年   27篇
  1987年   32篇
  1986年   30篇
  1985年   18篇
  1984年   18篇
  1983年   14篇
  1982年   17篇
  1979年   18篇
  1974年   9篇
  1965年   11篇
  1964年   13篇
  1963年   13篇
  1957年   16篇
  1954年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
982.
The effects of climate change and population growth in recent decades are leading us to consider their combined and potentially extreme consequences, particularly regarding hydrological processes, which can be modeled using a generalized extreme value (GEV) distribution. Most of the GEV models were based on a stationary assumption for hydrological processes, in contrast to the nonstationary reality due to climate change and human activities. In this paper, we present the nonstationary generalized extreme value (NSGEV) distribution and use it to investigate the risk of Niangziguan Springs discharge decreasing to zero. Rather than assuming the location, scale, and shape parameters to be constant as one might do for a stationary GEV distribution analysis, the NSGEV approach can reflect the dynamic processes by defining the GEV parameters as functions of time. Because most of the GEV model is designed to evaluate maxima (e.g. flooding, represented by positive numbers), and spring discharge cessation is a ?minima’, we deduced an NSGEV model for minima by applying opposite numbers, i.e. negative instead of positive numbers. The results of the model application to Niangziguan Springs showed that the probability of zero discharge at Niangziguan Springs will be 1/80 in 2025, and 1/10 in 2030. After 2025, the rate of decrease in spring discharge will accelerate, and the probability that Niangziguan Springs will cease flowing will dramatically increase. The NSGEV model is a robust method for analysing karst spring discharge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
983.
984.
Accepting the concept of standardization introduced by the standardized precipitation index, similar methodologies have been developed to construct some other standardized drought indices such as the standardized precipitation evapotranspiration index (SPEI). In this study, the authors provided deep insight into the SPEI and recognized potential deficiencies/limitations in relating to the climatic water balance it used. By coupling another well‐known Palmer drought severity index (PDSI), we proposed a new standardized Palmer drought index (SPDI) through a moisture departure probabilistic approach, which allows multi‐scalar calculation for accurate temporal and spatial comparison of the hydro‐meteorological conditions of different locations. Using datasets of monthly precipitation, temperature and soil available water capacity, the moisture deficit/surplus was calculated at multiple temporal scales, and a couple of techniques were adopted to adjust corresponding time series to a generalized extreme value distribution out of several candidates. Results of the historical records (1900–2012) for diverse climates by multiple indices showed that the SPDI was highly consistent and correlated with the SPEI and self‐calibrated PDSI at most analysed time scales. Furthermore, a simple experiment of hypothetical temperature and/or precipitation change scenarios also verified the effectiveness of this newly derived SPDI in response to climate change impacts. Being more robust and preferable in spatial consistency and comparability as well as combining the simplicity of calculation with sufficient accounting of the physical nature of water supply and demand relating to droughts, the SPDI is promising to serve as a competent reference and an alternative for drought assessment and monitoring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
985.
Exploring the chemical characterization of dissolved organic matter (DOM) is important for understanding the fate of laterally transported organic matter in watersheds. We hypothesized that differences in water-extractable organic matter (WEOM) in soils of varying land uses and rainfall events may significantly affect the quality and the quantity of stream DOM. To test our hypotheses, characteristics of rainfall-runoff DOM and WEOM of source materials (topsoil from different land uses and gullies, as well as typical vegetation) were investigated at two adjacent catchments in the Loess Plateau of China, using ultraviolet–visible absorbance and excitation emission matrix fluorescence with parallel factor analysis (PARAFAC). Results indicated that land-use types may significantly affect the chemical composition of soil WEOM, including its aromaticity, molecular weight, and degree of humification. The PARAFAC analysis demonstrated that the soils and stream water were dominated by terrestrial/allochthonous humic-like substances and microbial transformable humic-like fluorophores. Shifts in the fluorescence properties of stream DOM suggested a pronounced change in the relative proportion of allochthonous versus autochthonous material under different rainfall patterns and land uses. For example, high proportions of forestland could provide more allochthonous DOM input. This study highlights the relevance of soils and hydrological dynamics on the composition and fluxes of DOM issuing from watersheds. The composition of DOM in soils was influenced by land-use type. Precipitation patterns influenced the proportion of terrestrial versus microbial origins of DOM in surface runoff. Contributions of allochthonous, terrestrially derived DOM inputs were highest from forested landscapes.  相似文献   
986.
987.
This paper focuses on the efficiency of finite discrete element method (FDEM) algorithmic procedures in massive computers and analyzes the time-consuming part of contact detection and interaction computations in the numerical solution. A detailed operable GPU parallel procedure was designed for the element node force calculation, contact detection, and contact interaction with thread allocation and data access based on the CUDA computing. The emphasis is on the parallel optimization of time-consuming contact detection based on load balance and GPU architecture. A CUDA FDEM parallel program was developed with the overall speedup ratio over 53 times after the fracture from the efficiency and fidelity performance test of models of in situ stress, UCS, and BD simulations in Intel i7-7700K CPU and the NVIDIA TITAN Z GPU. The CUDA FDEM parallel computing improves the computational efficiency significantly compared with the CPU-based ones with the same reliability, providing conditions for achieving larger-scale simulations of fracture.  相似文献   
988.
The sequence architecture and depositional systems of the Paleogene lacustrine rift succession in the Huanghekou Sag, Bohai Bay Basin, NE China were investigated based on seismic profiles, combined with well log and core data. Four second‐order or composite sequences and seven third‐order sequences were identified. The depositional systems identified in the basin include: fan delta, braid delta, meander fluvial delta, lacustrine and sublacustrine fan. Identification of the slope break was conducted combining the interpretation of faults of each sequence and the identification of syndepositional faults, based on the subdivision of sequence stratigraphy and analysis of depositional systems. Multiple geomorphologic units were recognized in the Paleogene of the Huanghekou Sag including faults, flexures, depositional slope break belts, ditch‐valleys and sub‐uplifts in the central sag. Using genetic division principles and taking into consideration tectonic features of the Paleogene of the Huanghekou Sag, the study area was divided into the Northern Steep Slope/Fault Slope Break System, the Southern Gentle Slope Break System and T10 Tectonic Slope Break System/T10 Tectonic Belt. Responses of slope break systems to deposition–erosion are shown as: (1) basin marginal slope break is the boundary of the eroded area and provenance area; (2) ditch‐valley formed by different kinds of slope break belts is a good transport bypass for source materials; (3) shape of the slope break belt of the slope break system controls sediments types; (4) the ditch‐valley and sub‐sag of a slope break system is an unloading area for sediments; and (5) due to their different origins, association characteristics and developing patterns, the Paleogene slope break belt systems in the Huanghekou Sag show different controls on depositional systems. The Northern Fault Slope Break system controls the deposition of a fan delta‐lacustrine‐subaqueous fan, the Southern Gentle Slope Break system controls the deposition of a fluvial–deltaic–shallow lacustrine and sublacustrine fan, and the T10 Tectonic Slope Break System controls the deposition of shallow lacustrine beach bar sandbodies. The existence of a slope break system is a necessary but not a sufficient condition for studying sandbody development. The formation of effective sandbodies along the slope break depends on the reasonable coupling of effective provenance, necessary association patterns of slope break belt, adequate unloading space and creation of definite accommodation space. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
989.
介绍了基于开源GDAL类库开发,实现遥感影像的大批量快速裁切的技术,经应用测试,该技术提高了遥感影像处理的作业效率和自动化水平,降低了生产成本。  相似文献   
990.
通过基于高时间分辨率的"环境一号"卫星数据的变化向量分析(CVA)冬小麦遥感识别方法,并以地理国情普查数据为调整单元对识别结果进行修正,达到提高冬小麦遥感识别精度的目的。结果表明,使用CVA方法可提高冬小麦遥感识别精度,以国情普查数据为调整单元可在一定程度上降低遥感影像配准误差影响,对其他农作物遥感识别具有一定的参考意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号