首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   10篇
  国内免费   1篇
测绘学   3篇
大气科学   21篇
地球物理   42篇
地质学   77篇
海洋学   21篇
天文学   32篇
综合类   2篇
自然地理   7篇
  2022年   2篇
  2021年   6篇
  2020年   3篇
  2019年   6篇
  2018年   9篇
  2017年   7篇
  2016年   16篇
  2015年   5篇
  2014年   8篇
  2013年   9篇
  2012年   9篇
  2011年   19篇
  2010年   10篇
  2009年   15篇
  2008年   13篇
  2007年   6篇
  2006年   13篇
  2005年   3篇
  2004年   7篇
  2003年   7篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   4篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有205条查询结果,搜索用时 0 毫秒
201.
Waters from abandoned Sb-Au mining areas have higher Sb (up to 2138 μg L−1), As (up to 1252 μg L−1) and lower Al, Zn, Li, Ni and Co concentrations than those of waters from the As-Au mining area of Banjas, which only contain up to 64 μg L−1 As. In general, Sb occurs mainly as SbO3 and As H2AsO4. In general, waters from old Sb-Au mining areas are contaminated in Sb, As, Al, Fe, Cd, Mn, Ni and NO2, whereas those from the abandoned As-Au mining area are contaminated in Al, Fe, Mn, Ni, Cd and rarely in NO2. Waters from the latter area, immediately downstream of mine dumps are also contaminated in As. In stream sediments from Sb-Au and As-Au mining areas, Sb (up to 5488 mg kg−1) and As (up to 235 mg kg−1) show a similar behaviour and are mainly associated with the residual fraction. In most stream sediments, the As and Sb are not associated with the oxidizable fraction, while Fe is associated with organic matter, indicating that sulphides (mainly arsenopyrite and pyrite) and sulphosalts containing those metalloids and metal are weathered. Arsenic and Sb are mainly associated with clay minerals (chlorite and mica; vermiculite in stream sediments from old Sb-Au mining areas) and probably also with insoluble Sb phases of stream sediments. In the most contaminated stream sediments, metalloids are also associated with Fe phases (hematite and goethite, and also lepidocrocite in stream sediments from Banjas). Moreover, the most contaminated stream sediments correspond to the most contaminated waters, reflecting the limited capacity of stream sediments to retain metals and metalloids.  相似文献   
202.
This paper summarizes a new outlook on the conceptual model of Melgaço–Messegães CO2-rich cold (≈18 °C) mineral water systems, issuing in N of Portugal, based on their isotopic (2H, 3H, 13C, 14C and 18O) and geochemical features. Stable isotopes indicate the meteoric origin of these CO2-rich mineral waters. Based on the isotopic fractionation with the altitude, a recharge altitude between 513 up to 740 m a.s.l. was estimated, corroborating the tritium results. The lowest 3H content (0 TU) is found in the groundwater samples with the highest mineralization. The mineral waters circulation are mainly related to a granitic and granodioritic environment inducing two different groundwater types (Ca/Na–HCO3 and Na/Ca–HCO3), indicating different underground flow paths. Calcium dissolution is controlled by hydrolysis of rock-matrix silicate minerals (e.g. Ca-plagioclases) and not associated to anthropogenic sources. The shallow dilute groundwaters exhibit signatures of anthropogenic origins (e.g. NO3) and higher Na/Ca ratios. The stable isotopes together with the geochemistry provided no indication of mixing between the regional shallow cold dilute groundwater and mineral water systems. The heavy isotopic signatures identified in the δ13C data (δ13C = 4.7 ‰, performed on the total dissolved inorganic carbon (TDIC) of CO2-rich mineral waters) could be derived from a deep-seated (upper mantle) source or associated to methanogenesis (CH4 source). The negligible 14C content (≈2 pmC) determined in the TDIC of the mineral waters, corroborates the hypothesis of a mantle-derived carbon source to the mineral groundwater systems or dissolution of carbonate layers at depth.  相似文献   
203.
Tide gauge observations usually include temperature and density measurements. As an example of such data, a time series of sea surface temperature (SST) from 1855 to 1877 and from 1921 to 1993 at Fort Point, San Francisco, California (the longest U.S. record), and mean air temperature at Mission Dolores (San Francisco), California, from 1936 to 1990, were analyzed. Annual mean Fort Point SST increased at a rate of 0.3°C per century, but the coefficient of determination (r2) was below 0.06; for air temperature the results were 1.6°C per century and r2 = 0.16 respectively. Evidence of El Niño were found in the periodogram of the mean annual SST but not in the air temperature. The annual and semiannual peaks in the monthly time‐series analysis of SST and air temperature dominate their periodograms, and the cross‐correlation between them has r2 = 0.47. Of the 1.3 mmlyr sea level rise over the same time period. 0.003°C/yr accounts for 0.04 mmlyr in thermal expansion if the upper 100 m of the water column were uniformly warmed.  相似文献   
204.
The cosmographic expansion history of the universe is investigated by using the 557 type Ia supernovae from the Union2 Compilation set along with the current estimates involving the product of the CMB acoustic scale ?A and the BAO peak at two different redshifts. Using a well-behaved parameterization for the deceleration parameter, q(z) = q0 + q1z/(1 + z), we estimate the accelerating redshift zacc = −q0/(q0 + q1) (at which the universe switches from deceleration to acceleration) and investigate the influence of a non-vanishing spatial curvature on these estimates. We also use the asymptotic value of q(z) at high-z to place more restrictive bounds on the model parameters q0 and q1, which results in a more precise determination of the epoch of cosmic acceleration.  相似文献   
205.
Through 2004 and 2005, δ 34S of sinking material from Otsuchi Bay was measured at the center and rocky shore of the bay. At the center of the bay δ 34S was high (18∼21‰) in the material collected from April to November. However, δ 34S was low (9∼14‰) in the material collected from December to March. The increase in δ 34S in April was attributed to an increase in phytoplankton biomass because marine phytoplanktonic δ 34S is high. When δ 34S of sinking material was low, input of riverine material or bottom sediment resuspension were considered as the probable causes, because their δ 34S is low. Marine sulfur was always high (more than 70%) at both stations. The difference between the δ 34S of sinking material collected from the different sampling stations indicates that marine macroalgae contribute to sinking material near the shore when phytoplankton is scarce. In conclusion, the relative influence of different material sources to sinking materials could be successfully estimated using δ 34S.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号