首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4019篇
  免费   57篇
  国内免费   55篇
测绘学   99篇
大气科学   282篇
地球物理   778篇
地质学   1613篇
海洋学   243篇
天文学   917篇
综合类   7篇
自然地理   192篇
  2023年   18篇
  2022年   30篇
  2021年   30篇
  2020年   27篇
  2019年   39篇
  2018年   127篇
  2017年   126篇
  2016年   171篇
  2015年   80篇
  2014年   172篇
  2013年   218篇
  2012年   154篇
  2011年   183篇
  2010年   188篇
  2009年   220篇
  2008年   175篇
  2007年   170篇
  2006年   200篇
  2005年   131篇
  2004年   127篇
  2003年   108篇
  2002年   80篇
  2001年   74篇
  2000年   74篇
  1999年   79篇
  1998年   77篇
  1997年   87篇
  1996年   75篇
  1995年   46篇
  1994年   31篇
  1993年   57篇
  1992年   34篇
  1991年   42篇
  1990年   27篇
  1989年   33篇
  1988年   36篇
  1987年   42篇
  1986年   49篇
  1985年   41篇
  1984年   45篇
  1983年   41篇
  1982年   45篇
  1981年   34篇
  1980年   31篇
  1979年   35篇
  1977年   20篇
  1976年   20篇
  1975年   23篇
  1974年   20篇
  1973年   23篇
排序方式: 共有4131条查询结果,搜索用时 15 毫秒
101.
By the examples of the Siberian Platform and Canadian Shield, it is shown that spatial juxtaposition of Phanerozoic diamond-bearing kimberlite fields with giant swarms of Precambrian mafic dikes is caused by both systematic and incidental events. The first of these include (1) origination of mantle plumes and associated lenses of high-temperature mantle melting in the subequatorial “hot belt” of the early Earth, (2) formation of magma chambers that generated mafic dikes in these asthenospheric lenses, (3) shear stress, and (4) ultrahigh-pressure metamorphism of igneous and country rocks. As a result, the association of diamond-bearing high-density mafic and ultramafic rocks was formed under favorable thermal and fluidal conditions. These processes occurred first in the embryonic (multiplate) Neoarchean tectonic setting at a depth of 40–60 km (present-day elevation marks) and then at a deeper (100–150 km) level during the transition to the Proterozoic true plate tectonics. These processes left behind giant swarms of Precambrian mafic dikes, as well as structurally and genetically related deep-seated morphological and density anomalies. The relatively high position of two lithospheric units of diamond-bearing rocks, each underlain by a thick layer of the cold mantle, prevented these units from thermal and mechanical erosion during subsequent plate-tectonic stages characterized by deeper location of asthenospheric layers. The occurrence of clusters of Phanerozoic diatremes in ancient giant swarms of mafic dikes, as well as the enrichment of pipes in xenogenic diamond-bearing material derived from different levels of the tectonically delaminated lithosphere, may be attributed to incidental events that controlled the fertility of a relatively small number of kimberlite pipes.  相似文献   
102.
103.
In the mid-1980s, it was concluded based on geochemical study that Th, Sc, La concentrations and ratios Th/Sc, La/Sc and Eu/Eu* did not wary significantly in the post-Archean time. It was impossible to judge about compositional variations of upper crust during the Riphean and Vendian, because data of that time characterized a limited number of samples from the post-Archean basins of Australia, New Zealand, and Antarctic. Considered in this work are variations of Eu/Eu*, LREE/HREE, Th/Sc, and La/Sc ratios in Upper Precambrian fine-grained siliciclastic rock of the Southern Urals western flank (Bashkirian meganticlinorium) and Uchur-Maya region (Uchur-Maya plate and Yudoma-Maya belt). As is established, only the Eu anomaly in the studied siliciclastic rocks is practically identical to this parameter of the average post-Archean shale. Three other parameters plot on the Riphean-Vendian variation curves with positive and negative excursions of diverse magnitude, which do not coincide always in time. It is assumed that these excursions likely mark stages of local geodynamic activity, destruction of pre-Riphean cratons, and progressing recycling of sedimentary material during the Riphean.  相似文献   
104.
Twenty-nine water samples were collected from different river channels of the Pearl River Delta Economic Zone, China. An inductively coupled plasma-mass spectromonitor (ICP-MS) was used to measure concentrations of the trace elements in these samples. The results suggest that the average concentrations of rare earth elements in river water show an increasing trend from the West River, the North River, the rivers of the Pearl River Delta, and the Shenzhen River to the East River. Relatively high concentrations of heavy metals appear in the East River, the rivers of the Pearl River Delta and the Shenzhen River, while the West River and the North River have relatively low heavy metal concentrations. Trace element concentrations in samples collected near urban or industrial areas are much higher than those of samples collected from distant areas, away from urban and industrial areas. After natural conditions, human activities have significant influence on the trace element concentrations in river water. This trace element concentration’s spatial distribution in the river water from the Pearl River Delta Economic Zone is actually an integrated effect of natural conditions and human activity.  相似文献   
105.
The formation of colloids during the weathering of phyllite was investigated by exposing ground phyllite to Milli-Q water. Secondary mineral colloids of 101–102 nm were detected in significant concentrations. At pH of about 8.5, the solution concentration of these colloids reached up to 10 mg/L (however, acidification to pH 4.0 prevented the formation of the colloids). The mineralogical composition of the secondary mineral colloids is assumed to be a mixture of ferrihydrite, manganese oxyhydroxides, aluminosilicates, amorphous Al(OH)3 and gibbsite with possible additions of iron silicates and␣iron-alumino silicates. The colloids were stable over longer periods of time (at least several weeks), even in the presence of suspended ground rock. Direct formation of iron-containing secondary mineral colloids at the rock–water interface by the weathering of rock material is an alternative to the well-known mechanism of iron colloid formation in the bulk of water bodies by mixing of different waters or by aeration of anoxic waters. This direct mechanism is of relevance for colloid production during the weathering of freshly crushed rock in the unsaturated zone as for instance crushed rock in mine waste rock piles. Colloids produced by this mechanism, too, can influence the transport of contaminants such as actinides because these colloids have a large specific surface area and a high sorption affinity.  相似文献   
106.
Accumulation and distribution of heavy metals and phosphorus in sediments impact water quality. There has been an increasing concern regarding fish health in the St. Lucie Estuary, which is related to increased inputs of nutrients and metals in recent decades. To investigate vertical changes of contaminants (P, Cd, Cr, Co, Cu, Ni, Pb, Zn, and Mn) in sediments of the St. Lucie Estuary in South Florida, 117 layer samples from six of the 210 to 420 cm depth cores were analyzed for their total and water-soluble P and heavy metals, clay, total Fe, Al, K, Ca, Mg, Na, and pH. Principal component analysis (PCA) was used in two sets of analytical data (total and water-soluble contaminant concentrations) to document changes of contaminants in each core of sediments. The PCA of total contaminants and minerals resulted in two factors (principal components). The first and second factors accounted for 61.7 and 17.2 % of the total variation in all variables, and contrast indicators associated with contaminants of P, Cd, Co, Cr, Ni, Pb, Zn, and Mn and accumulation of Fe and Al oxides, respectively. The first factor could be used for overall assessment of P and heavy metal contamination, and was higher in the upper 45–90 cm than the lower depths of each core. The concentrations of P and heavy metals in the surface layers of sediments significantly increased, as compared with those in the sediments deeper than 45–90 cm. The PCA of water-soluble contaminants developed two factors. The second factor (Cu–P) was higher in the upper than the lower depths of the sediment, whereas the highest score of the first factor (Cd–Co–Cr–Ni–Pb–Zn–Mn) occurred below 100 cm. The water-soluble Cu and P concentrations were mainly dependent on their total concentrations in the sediments, whereas the water-soluble Cd, Co, Cr, Ni, Pb, Zn, and Mn concentrations were mainly controlled by pH.  相似文献   
107.
The Zlata Idka village is a typical mountainous settlement. As a consequence of more than 500 years of mining activity, its environment has been extensively affected by pollution from potentially toxic elements. This paper presents the results of an environmental-geochemical and health research in the Zlata Idka village, Slovakia. Geochemical analysis indicates that arsenic (As) and antimony (Sb) are enriched in soils, groundwater, surface water and stream sediments. The average As and Sb contents are 892 mg/kg and 818 mg/kg in soils, 195 mg/kg and 249 mg/kg in stream sediments, 0.028 mg/l and 0.021 mg/l in groundwater and 0.024 mg/l and 0.034 mg/l in surface water. Arsenic and Sb concentrations exceed upper permissible limits in locally grown vegetables. Within the epidemiological research the As and Sb contents in human tissues and fluids have been observed (blood, urine, nails and hair) in approximately one third of the village’s population (120 respondents). The average As and Sb concentrations were 16.3 μg/l and 3.8 μg/l in blood, 15.8 μg/l and 18.8 μg/l in urine, 3,179 μg/kg and 1,140 μg/kg in nails and 379 μg/kg and 357 μg/kg in hair. These concentrations are comparatively much higher than the average population. Health risk calculations for the ingestion of soil, water, and vegetables indicates a very high carcinogenic risk (>1/1,000) for as content in soil and water. The hazard quotient [HQ=average daily dose (ADD)/reference dose (RfD)] calculation method indicates a HQ>1 for groundwater As and Sb concentrations.  相似文献   
108.
Early Proterozoic granitoids are of a limited occurrence in the Baikal fold area being confined here exclusively to an arcuate belt delineating the outer contour of Baikalides, where rocks of the Early Precambrian basement are exposed. Geochronological and geochemical study of the Kevakta granite massif and Nichatka complex showed that their origin was related with different stages of geological evolution of the Baikal fold area that progressed in diverse geodynamic environments. The Nichatka complex of syncollision granites was emplaced 1908 ± 5 Ma ago, when the Aldan-Olekma microplate collided with the Nechera terrane. Granites of the Kevakta massif (1846 ± 8 Ma) belong to the South Siberian postcollision magmatic belt that developed since ~1.9 Ga during successive accretion of microplates, continental blocks and island arcs to the Siberian craton. In age and other characteristics, these granites sharply differ from granitoids of the Chuya complex they have been formerly attributed to. Accordingly, it is suggested to divide the former association of granitoids into the Chuya complex proper of diorite-granodiorite association ~2.02 Ga old (Neymark et al., 1998) with geochemical characteristics of island-arc granitoids and the Chuya-Kodar complex of postcollision S-type granitoids 1.85 Ga old. The Early Proterozoic evolution of the Baikal fold area and junction zone with Aldan shield lasted about 170 m.y. that is comparable with development periods of analogous structures in other regions of the world.  相似文献   
109.
Geochronological database considered in the work and characterizing the Anabar collision system in the Northeast Siberian craton includes coordinated results of Sm-Nd and Rb-Sr dating of samples from crustal xenoliths in kimberlites, deep drill holes, and bedrock outcrops. As is inferred, collision developed in three stages dated at 2200–2100, 1940–1760, and 1710–1630 Ma. The age of 2000–1960 Ma is established for substratum of mafic rocks, which probably originated during the lower crust interaction with asthenosphere due to the local collapse of the collision prism. Comparison of Sm-Nd and Rb-Sr isochron dates shows that the system cooling from ≈700 to ≈300°C lasted approximately 300 m.y. with a substantial lag relative to collision metamorphism and granite formation. It is assumed that accretion of the Siberian craton resulted in formation of a giant collision mountainous structure of the Himalayan type that was eroded by 1.65 Ga ago, when accumulation of gently dipping Meso-to Neoproterozoic (Riphean) platform cover commenced.  相似文献   
110.
A new generation of Earth gravity field models called GGM02 are derived using approximately 14 months of data spanning from April 2002 to December 2003 from the Gravity Recovery And Climate Experiment (GRACE). Relative to the preceding generation, GGM01, there have been improvements to the data products, the gravity estimation methods and the background models. Based on the calibrated covariances, GGM02 (both the GRACE-only model GGM02S and the combination model GGM02C) represents an improvement greater than a factor of two over the previous GGM01 models. Error estimates indicate a cumulative error less than 1 cm geoid height to spherical harmonic degree 70, which can be said to have met the GRACE minimum mission goals. Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号