首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   15篇
地球物理   25篇
地质学   29篇
海洋学   9篇
天文学   8篇
综合类   1篇
自然地理   12篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   8篇
  2013年   9篇
  2012年   10篇
  2011年   9篇
  2010年   6篇
  2009年   5篇
  2008年   2篇
  2007年   10篇
  2006年   5篇
  2004年   4篇
  2003年   7篇
  2002年   1篇
  1998年   1篇
  1993年   1篇
  1990年   2篇
  1982年   2篇
排序方式: 共有100条查询结果,搜索用时 437 毫秒
91.
Field experimental data in the atmospheric surface layer are analyzed using toolsfrom statistical geometry. The data consist of velocity measurements from sonicanemometer arrays. In the context of large eddy simulations (LES), these arrayspermit the spatial filtering needed to separate large from small scales. Time seriesof various quantities relevant to LES are evaluated from the data. Results show thatthe preferred filtered fluid deformation is axisymmetric extension and the preferredsubgrid stress state is axisymmetric contraction. The filtered fluctuating vorticityshows preferred alignments with the mean vorticity, with the streamwise direction,and with the intermediate strain-rate eigenvector. The alignment between eigenvectorsof the subgrid-scale stress and filtered strain rate is used to test eddy viscosity andmixed model formulations. In qualitative agreement with prior laboratory measurements at much lower Reynolds numbers, a bimodal distribution is observed, which can be reduced to good alignment with eddy viscosity closure using the mixed model.  相似文献   
92.
93.
94.
The influence of surface heterogeneities extends vertically within the atmospheric surface layer to the so-called blending height, causing changes in the fluxes of momentum and scalars. Inside this region the turbulence structure cannot be treated as horizontally homogeneous; it is highly dependent on the local surface roughness, the buoyancy and the horizontal scale of heterogeneity. The present study analyzes the change in scalar flux induced by the presence of a large wind farm installed across a heterogeneously rough surface. The change in the internal atmospheric boundary-layer structure due to the large wind farm is decomposed and the change in the overall surface scalar flux is assessed. The equilibrium length scale characteristic of surface roughness transitions is found to be determined by the relative position of the smooth-to-rough transition and the wind turbines. It is shown that the change induced by large wind farms on the scalar flux is of the same order of magnitude as the adjustment they naturally undergo due to surface patchiness.  相似文献   
95.
Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). During this period, magmas have changed from hornblende-biotite-rich units with low eruption temperatures (≤750–800°C; Kefalos and Kos dacites and rhyolites) to hotter, pyroxene-bearing units (>800–850°C; Nisyros rhyodacites) and are transitioning back to cooler magmas (Yali rhyolites). New whole-rock compositions, mineral chemistry, and zircon Hf isotopes show that these three types of silicic magmas followed the same differentiation trend: they all evolved by crystal fractionation and minor crustal assimilation (AFC) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ka Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew out most of the eruptible, volatile-charged magma and partly solidified the unerupted mush zone in the upper crust due to rapid unloading, decompression, and coincident crystallization. Subsequently, the system reestablished a shallow silicic production zone from more mafic parents, recharged from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were hotter (up to >100°C) than the caldera-forming event and erupted from reservoirs characterized by different mineral proportions (more plagioclase and less amphibole). We interpret such a change as a reflection of slightly drier conditions in the magmatic column after the caldera collapse due to the decompression event. With time, the upper crustal intermediate mush progressively transitioned into the cold-wet state that prevailed during the Kefalos-Kos stage. The recent eruptions of the high-SiO2 rhyolite on Yali Island, which are low temperature and hydrous phases (sanidine, quartz, biotite), suggest that another large, potentially explosive magma chamber is presently building under the Kos-Nisyros volcanic center.  相似文献   
96.
Northwestern Costa Rica is built upon an oceanic plateau that has developed chemical and geophysical characteristics of the upper continental crust. A major factor in converting the oceanic plateau to continental crust is the production, evolution, and emplacement of silicic magmas. In Costa Rica, the Caribbean Large Igneous Province (CLIP) forms the overriding plate in the subduction of the Cocos Plate—a process that has occurred for at least the last 25 my. Igneous rocks in Costa Rica older than about 8 Ma have chemical compositions typical of ocean island basalts and intra-oceanic arcs. In contrast, younger igneous deposits contain abundant silicic rocks, which are significantly enriched in SiO2, alkalis, and light rare-earth elements and are geochemically similar to the average upper continental crust. Geophysical evidence (high Vp seismic velocities) also indicates a relatively thick (~40 km), addition of evolved igneous rocks to the CLIP. The silicic deposits of NW Costa Rica occur in two major compositional groups: a high-Ti and a low-Ti group with no overlap between the two. The major and trace element characteristics of these groups are consistent with these magmas being derived from liquids that were extracted from crystal mushes—either produced by crystallization or by partial melting of plutons near their solidi. In relative terms, the high-Ti silicic liquids were extracted from a hot, dry crystal mush with low oxygen fugacity, where plagioclase and pyroxene were the dominant phases crystallizing, along with lesser amounts of hornblende. In contrast, the low-Ti silicic liquids were extracted from a cool, wet crystal mush with high oxygen fugacity, where plagioclase and amphibole were the dominant phases crystallizing. The hot-dry-reducing magmas dominate the older sequence, but the youngest sequence contains only magmas from the cold-wet-oxidized group. Silicic volcanic deposits from other oceanic arcs (e.g., Izu-Bonin, Marianas) have chemical characteristics distinctly different from continental crust, whereas the NW Costa Rican silicic deposits have chemical characteristics nearly identical to the upper continental crust. The transition in NW Costa Rica from mafic oceanic arc and intra-oceanic magma to felsic, upper continental crust-type magma is governed by a combination of several important factors that may be absent in other arc settings: (1) thermal maturation of the thick Caribbean plateau, (2) regional or local crustal extension, and (3) establishment of an upper crustal reservoir.  相似文献   
97.
Here, we present an approach to laser ablation ICP‐MS mapping of multi‐phase assemblages that permits the use of different internal standard elements, concentration values and reference materials for each mineral. In this way, we obtain not only broad pictures of elemental distributions within samples but can also extract high accuracy concentration data for any user‐selected region. This is accomplished by assigning regions of an image to corresponding mineral phases on a pixel‐by‐pixel basis. In this way, accurate trace element concentrations can be determined for each mineral phase, despite potential variations in their ablation characteristics. We present an example where elemental maps are constructed from ablation of a gabbroic sample that includes the phases apatite, amphibole and plagioclase. This work represents an important first step towards development of a method to produce highly accurate LA‐ICP‐MS elemental maps of multi‐phase samples.  相似文献   
98.
Conductivity, water level, air temperature, and depth of snowpack were monitored during a 26-day melt period of 88-cm-deep snowpack at a karst spring to characterize internal runoff and diffuse infiltration. Chloride from road salt provided a tracer and the snowpack a recharge source during the melt period. The melt period was divided into phases based on air temperature and chemograph pattern. For the first and third phases, mean air temperatures were below freezing, but above freezing during the second and fourth phases. During the first phase when the temperature peaked above freezing, conductivity typically spiked 10–50 μS/cm, suggesting input of road salt from conduits. When the snowpack continuously melted, conductivity and water-level trends were upward with smaller daily spikes in conductivity indicating infiltration from the dilute snowpack. This pattern suggests that road salt input continued when snowmelt recharged through the epikarst, but at lower concentrations than the conduit input. Refreezing of the snowpack and shallow subsurface for a brief period interrupted the recharge, and there was no longer a sawtooth pattern of conductivity. It is apparent that frozen conditions did not cease recharge because a dual recharge process was evident. While dual recharge from internal runoff and diffuse infiltration occurred, the portions varied because of changing melting rates. Observed patterns indicated internal runoff dominated during frozen periods because recharge water moved as overland flow across a frozen surface to focused pathways. Diffuse infiltration became available during warmer periods because subsurface thawing allowed the snowmelt to penetrate the epikarst. Results of snowmelt monitoring in spring discharge indicated the transient nature of karst recharge.  相似文献   
99.
We derive a conservative coincidence time window for joint searches of gravitational-wave (GW) transients and high-energy neutrinos (HENs, with energies ?100 GeV), emitted by gamma-ray bursts (GRBs). The last are among the most interesting astrophysical sources for coincident detections with current and near-future detectors. We take into account a broad range of emission mechanisms. We take the upper limit of GRB durations as the 95% quantile of the T90’s of GRBs observed by BATSE, obtaining a GRB duration upper limit of ∼150 s. Using published results on high-energy (>100 MeV) photon light curves for 8 GRBs detected by Fermi LAT, we verify that most high-energy photons are expected to be observed within the first ∼150 s of the GRB. Taking into account the breakout-time of the relativistic jet produced by the central engine, we allow GW and HEN emission to begin up to 100 s before the onset of observable gamma photon production. Using published precursor time differences, we calculate a time upper bound for precursor activity, obtaining that 95% of precursors occur within ∼250 s prior to the onset of the GRB. Taking the above different processes into account, we arrive at a time window of tHEN − tGW ∈ [−500 s, +500 s]. Considering the above processes, an upper bound can also be determined for the expected time window of GW and/or HEN signals coincident with a detected GRB, tGW − tGRB ≈ tHEN − tGRB ∈ [−350 s, +150 s]. These upper bounds can be used to limit the coincidence time window in multimessenger searches, as well as aiding the interpretation of the times of arrival of measured signals.  相似文献   
100.
Sources of sedimentary organic matter to a Morse River, Maine (USA) salt marsh over the last 3390 ± 60 RCYBP (Radiocarbon Years Before Present) are determined using distribution patterns of n-alkanes, bulk carbon isotopic analysis, and compound-specific carbon isotopic analysis. Marsh foraminiferal counts suggest a ubiquitous presence of high marsh and higher-high marsh deposits (dominated by Trochammina macrescens forma macrescens, Trochammina comprimata, and Trochammina inflata), implying deposition from ∼0.2 m to 0.5 m above mean high water. Distributions of n-alkanes show a primary contribution from higher plants, confirmed by an average chain length value of 27.5 for the core sediments, and carbon preference index values all >3. Many sample depths are dominated by the C25 alkane. Salicornia depressa and Ruppia maritima have similar n-alkane distributions to many of the salt marsh sediments, and we suggest that one or both of these plants is either an important source to the biomass of the marsh through time, or that another unidentified higher plant source is contributing heavily to the sediment pool. Bacterial degradation or algal inputs to the marsh sediments appear to be minor. Compound-specific carbon isotopic analyses of the C27 alkane are on average 7.2‰ depleted relative to bulk values, but the two records are strongly correlated (R2 = 0.89), suggesting that marsh plants dominate the bulk carbon isotopic signal. Our study underscores the importance of using caution when applying mixing models of plant species to salt marsh sediments, especially when relatively few plants are included in the model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号