首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21781篇
  免费   3246篇
  国内免费   4115篇
测绘学   1081篇
大气科学   3922篇
地球物理   5812篇
地质学   9970篇
海洋学   2716篇
天文学   1640篇
综合类   1742篇
自然地理   2259篇
  2024年   60篇
  2023年   295篇
  2022年   764篇
  2021年   865篇
  2020年   703篇
  2019年   785篇
  2018年   1003篇
  2017年   973篇
  2016年   1135篇
  2015年   880篇
  2014年   1123篇
  2013年   1280篇
  2012年   1101篇
  2011年   1160篇
  2010年   1234篇
  2009年   1199篇
  2008年   999篇
  2007年   1049篇
  2006年   846篇
  2005年   761篇
  2004年   577篇
  2003年   618篇
  2002年   568篇
  2001年   562篇
  2000年   687篇
  1999年   973篇
  1998年   827篇
  1997年   838篇
  1996年   796篇
  1995年   689篇
  1994年   597篇
  1993年   540篇
  1992年   441篇
  1991年   322篇
  1990年   249篇
  1989年   220篇
  1988年   216篇
  1987年   143篇
  1986年   155篇
  1985年   107篇
  1984年   101篇
  1983年   96篇
  1982年   100篇
  1981年   73篇
  1980年   71篇
  1979年   67篇
  1978年   31篇
  1977年   29篇
  1975年   30篇
  1974年   29篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
992.
The study of water fluxes is important to better understand hydrological cycles in arid regions. Data-driven machine learning models have been recently applied to water flux simulation. Previous studies have built site-scale simulation models of water fluxes for individual sites separately, requiring a large amount of data from each site and significant computation time. For arid areas, there is no consensus as to the optimal model and variable selection method to simulate water fluxes. Using data from seven flux observation sites in the arid region of Northwest China, this study compared the performance of random forest (RF), support vector machine (SVM), back propagation neural network (BPNN), and multiple linear regression (MLR) models in simulating water fluxes. Additionally, the study investigated inter-annual and seasonal variation in water fluxes and the dominant drivers of this variation at different sites. A universal simulation model for water flux was built using the RF approach and key variables as determined by MLR, incorporating data from all sites. Model performance of the SVM algorithm (R2 = 0.25–0.90) was slightly worse than that of the RF algorithm (R2 = 0.41–0.91); the BPNN algorithm performed poorly in most cases (R2 = 0.15–0.88). Similarly, the MLR results were limited and unreliable (R2 = 0.00–0.66). Using the universal RF model, annual water fluxes were found to be much higher than the precipitation received at each site, and natural oases showed higher fluxes than desert ecosystems. Water fluxes were highest during the growing season (May–September) and lowest during the non-growing season (October–April). Furthermore, the dominant drivers of water flux variation were various among different sites, but the normalized difference vegetation index (NDVI), soil moisture and soil temperature were important at most sites. This study provides useful insights for simulating water fluxes in desert and oasis ecosystems, understanding patterns of variation and the underlying mechanisms. Besides, these results can make a contribution as the decision-making basis to the water management in desert and oasis ecosystems.  相似文献   
993.
Spatial heterogeneity is ubiquitous in nature, which may significantly affect the soil hydraulic property curves. The models of a closed‐form functional relationship of soil hydraulic property curves (e.g. VG model or exponential model) are valid at point or local scale based on a point‐scale hydrological process, but how do scale effects of heterogeneity have an influence on the parameters of these models when the models are used in a larger scale process? This paper uses a two‐dimensional variably saturated flow and solute transport finite element model (VSAFT2) to simulate variations of pressure and moisture content in the soil flume under a constant head boundary condition. By changing different numerical simulation block sizes, a quantitative evaluation of parameter variations in the VG model, resulting from the scale effects, is presented. Results show that the parameters of soil hydraulic properties are independent of scale in homogeneous media. Parameters of α and n in homogeneous media, which are estimated by using the unsaturated hydraulic conductivity curve (UHC) or the soil water retention curve (WRC), are identical. Variations of local heterogeneities strongly affect the soil hydraulic properties, and the scale affects the results of the parameter estimations when numerical experiments are conducted. Furthermore, the discrepancy of each curve becomes considerable when moisture content becomes closer to a dry situation. Parameters estimated by UHC are totally different from the ones estimated by WRC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
994.
Abstract

Laboratory experiments concerning azimuthal jets in two-layer rotating systems in the absence and presence of bottom topography aligned along the jets have been conducted. The jets were forced by the selective withdrawal of fluid from the upper layer of a two-fluid system contained in a circular dishpan geometry. The principal parameters measured in the experiments were the jet Rossby number, Ro, and a stratification parameter F = r 1/(λ1λ2)1/2 where r 1 is the radius of the circular disc used for the selective withdrawal (i.e., r 1 is the approximate radius of curvature of the jet) and λ12 are the internal Rossby radii of deformation in the upper and lower fluids, respectively.

The no-topography experiments show that for a sufficiently small F, the particular value depending on Ro, the jet is stable for the duration of the experiment. For sufficiently large F, again as a function of Ro, the jet becomes unstable, exhibiting horizontal wave disturbances from modes three to seven. An Ro against F flow regime diagram is presented.

Experiments are then conducted in the presence of a bottom topography having constant cross-section and extending around a mid-radius of the dishpan. The axis of the topography is in the vicinity of the jet axis forced in the no-topography experiments and the crest of the topography is in the vicinity of the interface between the two fluids (i.e., the front associated with the jet). The experiments show that in all cases investigated the jet tends to be stabilized by the bottom topography. Experiments with the topography in place, but with the interface between the fluids being above the topography crest, are shown to be unstable but more irregular than their no-topography counterparts.

Various quantitative measurements of the jet are presented. It is shown, for example, that the jet Rossby number defined in terms of the fluid withdrawal rate from the tank. Q, can be well correlated with a dimensionless vorticity gradient, VG , across the upper layer jet. This allows for an assessment of the stability characteristics of a jet based on a knowledge of VG (which can be estimated given a jet profile) and F.  相似文献   
995.
The mechanism of the disruption, both lithospheric thinning and oceanization of the commonly accepted long‐term‐stable Archaean craton, is still an open question. The available models, all imply a bottom to top process. With the construction of a 1660‐km‐long transect across the eastern North China Craton (NCC), we demonstrate that both the P‐wave velocity and density in the lowermost crust beneath the central section are significantly higher than in the corresponding parts of the south and north sections on the transect. These features are interpreted as geophysical signature of lower crustal underplating, which supplies sufficiently high gravitational potential energy to trigger lateral flow of the lower crust. This magma underplating‐triggered bilateral lower crust flow may facilitate the lithospheric thinning by means of asthenosphere upwelling and decompression melting, which infill the gap produced by the lower crust flow. The underplating‐triggered lower crustal flow can provide an alternative mechanism to explain the NCC lithosphere disruption, which highlights the crustal feedback to Archaean lithosphere disruption, from top to bottom.  相似文献   
996.
This paper studies the continuous evolution of breaking wave for the surface water waves propagating on a sloping beach. A Lagrangian asymptotic solution is derived. According to the solution coupled with the wave breaking criteria and the equations of water particles motion, the wave deformation and the continuous wave breaking processes for the progressive water waves propagating on a sloping bottom can be derived. A series of experiments are also conducted to compare with the theoretical solution. The results show that the present solution can reasonably describe the plunging or spilling wave breaking phenomenon.  相似文献   
997.
Natural ecosystems in the region of the lower Tarim River in northwestern China strongly deteriorated since the 1950s due to an expanding desertification. As a result, the downstream Tarim River reaches became permanently dry land. This historical evolution in land‐use change is typically the result of the anthropogenic impact on natural ecosystems. On the basis of a spatially distributed hydrological catchment model bidirectionally linked with a fully hydrodynamic MIKE11 river model, land‐use changes characterized by historical changes in leaf area index (LAI) of vegetation, as well as the evolution of irrigated surface areas, can be causally related to changes in water resources (groundwater storage and surface water resources). An increased surface area of irrigated (agricultural) land, together with a majority of inefficient irrigation methods, did lead to a strong increase of water resources consumption of the farmlands located in the upper Tarim River area. Evidently, this evolution influenced available water resources downstream in the Tarim basin. As a result, farmland has been gradually relocated to the upstream regions. This has led to reduced flows from the upper Tarim stream, which subsequently accelerated the dropping of the groundwater level downstream in the basin. This study moreover demonstrates that land surface biomass changes (cumulative LAI) along the lower Tarim River are strongly related to the changes in groundwater storage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
998.
The dynamic response of an end bearing pile embedded in a linear visco‐elastic soil layer with hysteretic type damping is theoretically investigated when the pile is subjected to a time‐harmonic vertical loading at the pile top. The soil is modeled as a three‐dimensional axisymmetric continuum in which both its radial and vertical displacements are taken into account. The pile is assumed to be vertical, elastic and of uniform circular cross section. By using two potential functions to decompose the displacements of the soil layer and utilizing the separation of variables technique, the dynamic equilibrium equation is uncoupled and solved. At the interface of soil‐pile system, the boundary conditions of displacement continuity and force equilibrium are invoked to derive a closed‐form solution of the vertical dynamic response of the pile in frequency domain. The corresponding inverted solutions in time domain for the velocity response of a pile subjected to a semi‐sine excitation force applied at the pile top are obtained by means of inverse Fourier transform and the convolution theorem. A comparison with two other simplified solutions has been performed to verify the more rigorous solutions presented in this paper. Using the developed solutions, a parametric study has also been conducted to investigate the influence of the major parameters of the soil‐pile system on the vertical vibration characteristics of the pile. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
999.
1000.
This paper examines the dynamics of energy investments and clean energy Research and Development (R&D) using a scenario-based modeling approach. Starting from the global scenarios proposed in the RoSE model ensemble experiment, we analyze the dynamics of investments under different assumptions regarding economic and population growth as well as availability of fossil fuel resources, in the absence of a climate policy. Our analysis indicates that economic growth and the speed of income convergence across countries matters for improvements in energy efficiency, both via dedicated R&D investments but mostly through capital-energy substitution. In contrast, fossil fuel prices, by changing the relative competitiveness of energy sources, create an economic opportunity for radical innovation in the energy sector. Indeed, our results suggest that fossil fuel availability is the key driver of investments in low carbon energy innovation. However, this innovation, by itself, is not sufficient to induce emission reductions compatible with climate stabilization objectives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号