首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   60篇
  国内免费   74篇
测绘学   14篇
大气科学   49篇
地球物理   98篇
地质学   156篇
海洋学   61篇
天文学   3篇
综合类   42篇
自然地理   59篇
  2023年   3篇
  2022年   14篇
  2021年   14篇
  2020年   17篇
  2019年   15篇
  2018年   14篇
  2017年   22篇
  2016年   20篇
  2015年   17篇
  2014年   26篇
  2013年   30篇
  2012年   11篇
  2011年   21篇
  2010年   21篇
  2009年   20篇
  2008年   8篇
  2007年   19篇
  2006年   9篇
  2005年   8篇
  2004年   4篇
  2003年   8篇
  2002年   14篇
  2001年   12篇
  2000年   15篇
  1999年   14篇
  1998年   16篇
  1997年   8篇
  1996年   11篇
  1995年   13篇
  1994年   12篇
  1993年   8篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   9篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有482条查询结果,搜索用时 415 毫秒
31.
Through detailed field mapping, the tectonic deformation in the front area of the Tianjingshan fault zone is discussed in this paper. The result shows that there are two Quaternary thrust (oblique) fault-fold belts, namely: the Miaoshan and Hongjianshan fault-fold belts, in the front area of the south wall's strike-slip movement of the Tianjingshan fault zone. The Hejiakouzi Quaternary anticline, which is a part of the Miaoshan fault-fold belt, is mainly discussed. It is pointed out that the fold began to grow in the middle part near Hejiakouzi in the mid-late stage of middle Pleistocene epoch and then gradually developed towards the ends in late Quaternary. Based on the Cenozoic structural features, the genesis of the Miaoshan and Hongjianshan fault-fold belts and the kinematic relation they bear with the Tianjingshan fault zone are analyzed.  相似文献   
32.
喇嘛苏铜矿床斑岩体地质地球化学特征及含矿性评价   总被引:5,自引:0,他引:5  
矿区内广泛发育以斜长花岗斑岩和花岗闪长斑岩为主的中酸性斑岩体。斑岩的结构特征反映出岩浆浅成侵位成因。研究表明该区斑岩具有相对富硅和富碱高钾的岩石化学特征,属钙碱性系列;具有Cu、Ag、Bi等成矿元素高丰度的微量元素地球化学特征和低ΣREE与高δEu值的稀土地球化学特征。矿区内铜矿化富集在斑岩体内外接触带,斑岩体深源浅成特点和富碱高钾岩石化学特征于铜矿化富集有利。Cu、Ag等成矿元素高丰度及其与矿化类型一致性说明成矿与岩浆活动有密切成因关系。  相似文献   
33.
This paper examines the effects of the mixing of dry air into a cloud top from the point of view of the droplet spectra. It is shown theoretically that the resulting cycling of the air up and down in the cloud, as seems to be the essential mechanism by which cumuli have been diluted to their observed liquid water mixing ratio, can double the largest drop radius and generate cloud parcels containing drops of all sizes up to this maximum. These changes in the droplet distribution with size occur by a process which is not greatly influenced by the cloud condensation nuclei or the details of droplet growth since maritime like spectra can develop in continental type cumuli. It shows that large numbers of cloud condensation nuclei should not have much effect in inhibiting the rainforming process by reducing coalescence growth. On the contrary, the controlling parameters which determine precipitation efficiency and times seem to be those which control the mixing.  相似文献   
34.
In the wave field induced by active sources, the observed phase velocity of surface waves is influenced by both mode incompatibility (i.e. non-planar spread of surface waves is idealized as plane waves) and body waves. Effects of sources are usually investigated based on numerical simulations and physical models. Several methods have been proposed to mitigate the effects. In application, however, these methods may also have difficulties since the energy of the body waves depends on soil stratification and parameters. There are multiple modes of surface waves in layered media, among which the higher modes dominate the wave field for soils with the irregular shear velocity profiles. Considering the mode incompatibility and the higher modes, we derive analytical expressions for the effective phase velocity of the surface waves based on the thin layer stiffness method, and investigate the effects of the body waves on the observed phase velocity through the phase analysis of the vibrations of both the surface waves and the body waves. The results indicate that the effective phase velocity of the surface waves in layered media varies with the frequency and the spread distance, and is underestimated compared to that of the plane surface waves in the spread range less than about one wavelength. The oscillations that appeared in the observed phase velocity are due to the involvement of the body waves. The mode incompatibility can be ignored in the range beyond one wavelength, while the influence range of the body waves is far beyond one wavelength. The body waves have a significant influence on the observed phase velocity of the surface waves in soils with a soft layer trapped between the first and the second layers because of strong reflections.  相似文献   
35.
干旱荒漠区土地利用方式快速转变对土壤入渗性能的影响   总被引:3,自引:1,他引:3  
研究不同土地利用类型下土壤入渗及其影响因素,有助于城市土地利用管理及径流调节。以快速城市化的兰州新区6种土地利用类型为例,利用圆盘入渗仪,对土壤水分入渗过程进行了实地测量,并利用主成分分析对影响因素进行研究。结果表明:城市化过程中土地利用变化使土壤砂粒和容重增加,总孔隙度和饱和含水量降低;待建地和人工林地的土壤入渗参数值均低于其他土地利用类型。土壤入渗率与有机质含量、总孔隙度、饱和含水量、粉粒含量正相关,与容重和砂粒、黏粒含量负相关。城市化过程中土地利用类型向待建地的转变改变了土壤理化性质及土壤水分入渗能力。  相似文献   
36.
The soil freeze–thaw controls the hydrological and carbon cycling and thus affects water and energy exchanges at land surface. This article reported a newly developed algorithm for distinguishing the freeze/thaw status of surface soil. The algorithm was based on information from Advanced Microwave Scanning Radiometer Enhanced (AMSR‐E) which records brightness temperature (Tb) in the afternoon and after midnight. The criteria and discriminant functions were obtained from both radiometer observations and model simulations. First of all, the microwave radiation from freeze–thaw soil was examined by carrying out experimental measurements at 18·7 and 36·5 GHz using a Truck‐mounted Multi‐frequency Microwave Radiometer (TMMR) in the Heihe River of China. The experimental results showed that the soil moisture is a key component that differentiates the microwave radiation behaviours during the freeze–thaw process, and the differences in soil temperature and emissivity between frozen and thawed soils were found to be the most important criteria. Secondly, a combined model was developed to consider the impacts of complex ground surface conditions on the discrimination. The model simulations quite followed the trend of in situ observations with an overall relation coefficient (R) of approximately 0·88. Finally, the ratio of Tb18·7H (horizontally polarized Tb at 18·7 GHz) to Tb36·5V was considered primarily as the quasi‐emissivity, which is more reasonable and explicit in measuring the microwave radiation changes in soil freezing and thawing than the spectral gradient. By combining Tb36·5V to indicate the soil temperature variety, a Fisher linear discrimination analysis was used to establish the discriminant functions. After being corrected by TMMR measurements, the new discriminant algorithm had an overall accuracy of 86% when validated by 4‐cm soil temperature. The multi‐year discriminant results also provided a good agreement with the classification map of frozen ground in China. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
37.
The effects of frictional forces acting on the sidewalls of buried box culverts are presented as determined with finite element method (FEM) and detailed soil modelling. The possibility of reducing earth pressure on deeply buried concrete box culverts by the imperfect trench installation (ITI) method has been contemplated during the last several decades. There have been limited research results published primarily regarding the qualitative aspect of load reduction in ITIs. It was found during the course of this study that significant frictional forces develop along the sidewalls of box culverts and adjacent sidefills in ITIs. Current American Association of State Highway and Transportation Officials provisions do not consider these frictional forces, but they cannot be neglected in ITIs, as their effect is dominant. An optimum geometry for the soft zone in ITIs is presented to maximize earth load reductions. The soil–structure interaction at the box culvert–soil interface was found to have a significant effect on total earth pressure acting on the bottom slab. Predictor equations for earth load reduction rates were formulated for ITIs incorporating the optimum soft zone geometry based on the FEM. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
38.
本文考虑到干涉仪对电离层中不同尺度不规则性的滤波作用、结合密云米波综合孔径系统、提出了电离层E_(?)层是电离层不规则性影响该系统的主要根源。不规则性的尺度约在700~1000米的范围。再考虑到E_(?)层的漂移运动,提出了文中所描述的模型。用电子计算机进行了E_(?)层对综合射束污染的模拟计算,结果指出:射束主瓣的增益下降约10%,副瓣由13%增大到18%;综合射束在赤经方向出现不对称性,从而引起约0.6秒的赤经误差;射束的边缘处和两个扇形区出现了杂瓣。  相似文献   
39.
The oceanic carbon cycle in the tropical-subtropical Pacific is strongly affected by various physical processes with different temporal and spatial scales, yet the mechanisms that regulate air-sea CO2 flux are not fully understood due to the paucity of both measurement and modeling. Using a 3-D physical-biogeochemical model, we simulate the partial pressure of CO2 in surface water (pCO2sea) and air-sea CO2 flux in the tropical and subtropical regions from 1990 to 2004. The model reproduces well the observed spatial differences in physical and biogeochemical processes, such as: (1) relatively higher sea surface temperature (SST), and lower dissolved inorganic carbon (DIC) and pCO2sea in the western than in the central tropical-subtropical Pacific, and (2) predominantly seasonal and interannual variations in the subtropical and tropical Pacific, respectively. Our model results suggest a non-negligible contribution of the wind variability to that of the air-sea CO2 flux in the central tropical Pacific, but the modeled contribution of 7% is much less than that from a previous modeling study (30%; McKinley et al., 2004). While DIC increases in the entire region SST increases in the subtropical and western tropical Pacific but decreases in the central tropical Pacific from 1990 to 2004. As a result, the interannual pCO2sea variability is different in different regions. The pCO2sea temporal variation is found to be primarily controlled by SST and DIC, although the role of salinity and total alkalinity, both of which also control pCO2sea, need to be elucidated by long-term observations and eddy-permitting models for better estimation of the interannual variability of air-sea CO2 flux.  相似文献   
40.
Shear‐type buildings with Maxwell model‐based brace–damper systems are studied in this paper with a primary emphasis on the effects of brace stiffness. A single‐story building with a viscous damper installed on top of a Chevron‐brace is first investigated. Closed‐form solutions are derived for the simple structure, relating the brace stiffness and damper coefficient to the targeted reduction in response displacement or acceleration. For a given brace stiffness, the solution is minimized to give a set of formulae that will allow the optimal damper coefficient to be determined, assuring the desired performance. The model is subsequently extended to multistory buildings with viscous dampers installed on top of Chevron‐braces. For a targeted reduction in the mean square of the interstory drift, floor acceleration or base shear force, the minimum brace stiffness and optimal damper coefficients are obtained through an iterative procedure. The response reduction, which signifies the improved performance, is achieved by a combination of brace stiffness and viscous damper coefficients, unlike conventional approaches where damper coefficients are typically optimized independent of brace stiffnesses. Characteristics of multi‐degree‐of‐freedom systems are studied using a 2‐story and a 10‐story buildings where the effects of brace stiffness on the overall performance of the building can be quantified. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号