首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   562篇
  免费   32篇
  国内免费   2篇
测绘学   28篇
大气科学   93篇
地球物理   137篇
地质学   226篇
海洋学   27篇
天文学   47篇
综合类   3篇
自然地理   35篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2020年   13篇
  2019年   10篇
  2018年   24篇
  2017年   29篇
  2016年   40篇
  2015年   20篇
  2014年   21篇
  2013年   39篇
  2012年   30篇
  2011年   33篇
  2010年   37篇
  2009年   40篇
  2008年   32篇
  2007年   28篇
  2006年   24篇
  2005年   24篇
  2004年   12篇
  2003年   9篇
  2002年   19篇
  2001年   15篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   8篇
  1996年   3篇
  1995年   8篇
  1994年   6篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1988年   3篇
  1987年   3篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1977年   6篇
  1970年   1篇
  1969年   1篇
  1965年   1篇
  1961年   1篇
  1960年   1篇
  1958年   1篇
  1953年   1篇
  1951年   1篇
  1950年   1篇
  1948年   1篇
排序方式: 共有596条查询结果,搜索用时 15 毫秒
121.
Abstract

The estimation of flood damage is an important component for risk-oriented flood design, risk mapping, financial appraisals and comparative risk analyses. However, research on flood-loss modelling, especially in the commercial sector, has not gained much attention so far. Therefore, extensive data about flood losses were collected for affected companies via telephone surveys after the floods of 2002, 2005 and 2006 in Germany. Potential loss determining factors were analysed. The new Flood Loss Estimation MOdel for the commercial sector (FLEMOcs) was developed on the basis of 642 loss cases. Losses are estimated depending on water depth, sector and company size as well as precaution and contamination. The model can be applied to the micro-scale, i.e. to single production sites as well as to the meso-scale, i.e. land-use units, thus enabling its countrywide application.

Citation Kreibich, H., Seifert, I., Merz, B. & Thieken, A. H. (2010) Development of FLEMOcs – a new model for the estimation of flood losses in the commercial sector. Hydrol. Sci. J. 55(8), 1302–1314.  相似文献   
122.
Abstract

The estimation of flood loss is difficult, especially in the commercial sector, because of its great inhomogeneity. However, the reliability of loss modelling is fairly unknown, since flood-loss models are scarcely validated. The newly developed Flood Loss Estimation MOdel for the commercial sector (FLEMOcs) was validated on the micro-scale using a leave-one-out cross-validation procedure. Additionally, different meso-scale loss functions were compared. Meso-scale model application was undertaken in 19 municipalities which were affected during the 2002 flood in Germany. Model results were compared with the results of three other loss models, as well as with official loss records. The micro-scale validation shows very good results, with no bias and mean absolute errors between 23 and 31%. The meso-scale validation indicates that FLEMOcs provides good results, especially in large areas with many affected companies where high losses are expected.

Citation Seifert, I., Kreibich, H., Merz, B. & Thieken, A. H. (2010) Application and validation of FLEMOcs – a flood-loss estimation model for the commercial sector. Hydrol. Sci. J. 55(8), 1315–1324.  相似文献   
123.
An application of line simplification considering spatial knowledge is described. A method for identifying potential conflict regions, in order to avoid the self-intersection of generalized, lines, is also discussed. Further-more, a new progressive line simplification algorithm is presented. From the view point of spatial cognition, a spatial hierarchical structure is proposed, and its application to construction of spatial knowledge related to a line is explained.  相似文献   
124.
One of the uncertainties in the field of carbon dioxide capture and storage (CCS) is caused by the parameterization of geochemical models. The application of geochemical models contributes significantly to calculate the fate of the CO2 after its injection. The choice of the thermodynamic database used, the selection of the secondary mineral assemblage as well as the option to calculate pressure dependent equilibrium constants influence the CO2 trapping potential and trapping mechanism. Scenario analyses were conducted applying a geochemical batch equilibrium model for a virtual CO2 injection into a saline Keuper aquifer. The amount of CO2 which could be trapped in the formation water and in the form of carbonates was calculated using the model code PHREEQC. Thereby, four thermodynamic datasets were used to calculate the thermodynamic equilibria. Furthermore, the equilibrium constants were re-calculated with the code SUPCRT92, which also applied a pressure correction to the equilibrium constants. Varying the thermodynamic database caused a range of 61% in the amount of trapped CO2 calculated. Simultaneously, the assemblage of secondary minerals was varied, and the potential secondary minerals dawsonite and K-mica were included in several scenarios. The selection of the secondary mineral assemblage caused a range of 74% in the calculated amount of trapped CO2. Correcting the equilibrium constants with respect to a pressure of 125 bars had an influence of 11% on the amount of trapped CO2. This illustrates the need for incorporating sensitivity analyses into reaction pathway modeling.  相似文献   
125.
We examine the space–time structure of the wind and temperature fields, as well as that of the resulting spatial temperature gradients and horizontal advection of sensible heat, in the sub-canopy of a forest with a dense overstorey in moderately complex terrain. Data were collected from a sensor network consisting of ten stations and subject to orthogonal decomposition using the multiresolution basis set and stochastic analyses including two-point correlations, dimensional structure functions, and various other bulk measures for space and time variability. Despite some similarities, fundamental differences were found in the space–time structure of the motions dominating the variability of the sub-canopy wind and temperature fields. The dominating motions occupy similar spatial, but different temporal, scales. A conceptual space–time diagram was constructed based on the stochastic analysis that includes the important end members of the spatial and temporal scales of the observed motions of both variables. Short-lived and small-scale motions govern the variability of the wind, while the diurnal temperature oscillation driven by the surface radiative transfer is the main determinant of the variability in the temperature signal, which occupies much larger time scales. This scale mismatch renders Taylor’s hypothesis for sub-canopy flow invalid and aggravates the computation of meaningful estimates of horizontal advective fluxes without dense spatial information. It may further explain the ambiguous and inconclusive results reported in numerous energy and mass balance and advection studies evaluating the hypothesis that accounting for budget components other than the change in storage term and the vertical turbulent flux improves the budget closure when turbulent diffusion is suppressed in plant canopies. Estimates of spatial temperature gradients and advective fluxes were sensitive to the network geometry and the spatial interpolation method. The assumption of linear spatial temperature gradients was not supported by the results, and leads to increased spatial and temporal variability of inferred spatial gradients and advection estimates. A method is proposed to estimate the appropriate minimum network size of wind and temperature sensors suitable for an evaluation of energy and mass balances by reducing spatial and temporal variability of the spatially sampled signals, which was estimated to be on the order of 200 m at the study site.  相似文献   
126.
In the framework of the EGER (ExchanGE processes in mountainous Regions) project, the contribution of coherent structures to vertical and horizontal transports in a tall spruce canopy is investigated. The combination of measurements done in both the vertical and horizontal directions allows us to investigate coherent structures, their temporal scales, their role in flux transport, vertical coupling between the sub-canopy, canopy and air above the canopy, and horizontal coupling in the sub-canopy layer. The temporal scales of coherent structures detected with the horizontally distributed systems in the sub-canopy layer are larger than the temporal scales of coherent structures detected with the vertically distributed systems. The flux contribution of coherent structures to the momentum and sensible heat transport is found to be dominant in the canopy layer. Carbon dioxide and latent heat transport by coherent structures increase with height and reach a maximum at the canopy height. The flux contribution of the ejection decreases with increasing height and becomes dominant above the canopy level. The flux fraction transported during the sweep increases with height and becomes the dominant exchange process at the upper canopy level. The determined exchange regimes indicate consistent decoupling between the sub-canopy, canopy and air above the canopy during evening, nighttime and morning hours, whereas the coupled states and coupled by sweep states between layers are observed mostly during the daytime. Furthermore, the horizontal transport of sensible heat by coherent structures is investigated, and the heterogeneity of the contribution of coherent events to the flux transport is demonstrated. A scheme to determine the horizontal coupling by coherent structures in the sub-canopy layer is proposed, and it is shown that the sub-canopy layer is horizontally coupled mainly in the wind direction. The vertical coupling in most cases is observed together with streamwise horizontal coupling, whereas the cross-stream direction is decoupled.  相似文献   
127.
The turbulence data measured at two levels (i.e., 8.7 and 2.7?m) in the Energy Balance Experiment (EBEX), which was conducted in San Joaquin Valley in California during the period from July 20 to August 24, 2000, are used to study the characteristics of coherent structures over an irrigated cotton field. Patch-to-patch irrigation in the field generated the dry-to-wet horizontal advection and the oasis effects, leading to the development of a stably internal boundary layer (SIBL) in the late mornings or the early afternoons. The SIBL persisted in the rest of the afternoons. Under this circumstance, a near-neutral atmospheric surface layer (ASL) developed during the period with a stratification transition from the unstable to stable conditions during the daytime. Therefore, EBEX provides us with unique datasets to investigate the features of coherent structures that were generated over the patches upstream and passed by our site in the unstable ASL, the near-neutral ASL, and the SIBL. We use an objective detection technique and the conditional average method that is developed based on the wavelet analysis. Our data reveal some consistencies and inconsistencies in the characteristics of coherent structures as compared with previous studies. Ramp-like structures and sweep?Cejection cycles under the daytime SIBL have similar patterns to those under the nocturnal stable ASL. However, some features (i.e., intermittence) are different from those under the nocturnal stable ASL. Under the three stratifications, thermal and mechanical factors in the ASL perform differently in affecting the ramp intensity for different quantities (i.e., velocity components, temperature, and specific humidity), leading to coherent structures that modulate turbulence flow and alter turbulent transfer differently. It is also found that coherent structures contribute about 10?C20% to the total fluxes in our case with different flux contributions under three stratifications and with higher transporting efficiency in sensible heat flux than latent heat and momentum fluxes.  相似文献   
128.
Rapid changes in spring water quality in karst areas due to rapid recharge of bacterially contaminated water are a major concern for drinking water suppliers and users. The main objective of this study was to use field experiments with fecal indicators to verify the vulnerability of a karst spring to pathogens, as determined by using a numerical modeling approach. The groundwater modeling was based on linear storage models that can be used to simulate karst water flow. The vulnerability of the karst groundwater is estimated using such models to calculate criteria that influence the likelihood of spring water being affected by microbial contamination. Specifically, the temporal variation in the vulnerability, depending on rainfall events and overall recharge conditions, can be assessed and quantified using the dynamic vulnerability index (DVI). DVI corresponds to the ratio of conduit to diffuse flow contributions to spring discharge. To evaluate model performance with respect to predicted vulnerability, samples from a spring were analyzed for Escherichia coli, enterococci, Clostridium perfringens, and heterotrophic plate count bacteria during and after several rainfall events. DVI was shown to be an indication of the risk of fecal contamination of spring water with sufficient accuracy to be used in drinking water management. We conclude that numerical models are a useful tool for evaluating the vulnerability of karst systems to pathogens under varying recharge conditions  相似文献   
129.
Major- and minor- element determinations were carried out on a high-resolution sample set obtained from a sediment drill core at Wunstorf (N. Germany). This study interval includes the black shale-bearing Hesseltal Formation associated with the Oceanic Anoxic Event 2 (OAE 2), also referred to as Cenomanian-Turonian Boundary Event (CTBE). Seven black shale packages, each containing several black shale layers, were defined by elevated TOC values, with black shale packages 1-4 deposited during OAE 2. Packages 5-7 extend above the level of the positive carbon-isotope excursion defining OAE 2, indicating that conditions favouring organic carbon burial must have prevailed longer in the Wunstorf Basin than elsewhere. Geochemical analyses revealed no significant differences between black shale packages deposited during and after OAE 2. Enrichment patterns of sulphur, iron and redox-sensitive and sulphide-forming trace metals point to suboxic to anoxic conditions existing at the sediment-water interface during black shale deposition, whereas sulphidic conditions prevailed deeper in the sediment. Variations in element/Al ratios follow cyclic patterns which are interpreted to represent climatically-induced changes in sediment supply. Reduced vertical mixing led to water-column stratification and caused black shale deposition.  相似文献   
130.
IFKIS-Hydro is an information and warning system for hydrological hazards in small- and medium-scale catchments. The system collects data such as weather forecasts, precipitation measurements, water level gauges, discharge simulations and local observations of event-specific phenomena. In addition, IFKIS-Hydro incorporates a web-based information platform, which serves as a central hub for the submission and overview of data. Special emphasis is given to local information. This is accomplished particularly by human observers. In medium-scale catchments, discharge forecast models have an increasing importance in providing valuable information. IFKIS-Hydro was developed in several test regions in Switzerland and the first results of its application are available now. The system is constantly extended to additional regions and may become the standard for warning systems in smaller catchments in Switzerland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号