首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   20篇
  国内免费   5篇
测绘学   13篇
大气科学   37篇
地球物理   168篇
地质学   189篇
海洋学   40篇
天文学   92篇
综合类   1篇
自然地理   29篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   10篇
  2016年   6篇
  2015年   8篇
  2014年   19篇
  2013年   22篇
  2012年   8篇
  2011年   23篇
  2010年   17篇
  2009年   27篇
  2008年   27篇
  2007年   16篇
  2006年   19篇
  2005年   19篇
  2004年   17篇
  2003年   14篇
  2002年   10篇
  2001年   7篇
  2000年   14篇
  1999年   10篇
  1998年   8篇
  1997年   8篇
  1996年   9篇
  1995年   8篇
  1994年   8篇
  1993年   6篇
  1992年   7篇
  1991年   6篇
  1990年   7篇
  1989年   11篇
  1988年   7篇
  1987年   19篇
  1986年   10篇
  1985年   9篇
  1984年   13篇
  1983年   17篇
  1982年   9篇
  1981年   12篇
  1980年   9篇
  1979年   15篇
  1978年   7篇
  1977年   8篇
  1976年   5篇
  1975年   9篇
  1974年   7篇
  1973年   11篇
  1972年   6篇
  1971年   5篇
排序方式: 共有569条查询结果,搜索用时 62 毫秒
11.
A microflare or a group of Ellerman bombs was found to be associated with several points of white-light enhancements. These points had similar sizes as facular points (d 0.3 arc sec). Temporal evolution of these activities is described. Origins of these activities are discussed to be deeply seated excess heating in chromospheric and photospheric levels.  相似文献   
12.
In the mid-fifteenth century, one of the largest eruptions of the last 10 000 years occurred in the Central New Hebrides arc, forming the Kuwae caldera (12x6 km). This eruption followed a late maar phase in the pre-caldera edifice, responsible for a series of alternating hydromagmatic deposits and airfall lapilli layers. Tuffs related to caldera formation ( 120 m of deposits on a composite section from the caldera wall) were emitted during two main ignimbritic phases associated with two additional hydromagmatic episodes. The lower hydromagmatic tuffs from the precaldera maar phase are mainly basaltic andesite in composition, but clasts show compositions ranging from 48 to 60% SiO2. The unwelded and welded ashflow deposits from the ignimbritic phases and the associated intermediate and upper hydromagmatic deposits also show a wide compositional range (60–73% SiO2), but are dominantly dacitic. This broad compositional range is thought to be due to crystal fractionation. The striking evolution from one eruptive style (hydromagmatic) to the other (magmatic with emission of a large volume of ignimbrites) which occurred either over the tuff series as a whole, or at the beginning of each ignimbritic phase, is the most impressive characteristic of the caldera-forming event. This strongly suggests triggering of the main eruptive phases by magma-water interaction. A three-step model of caldera formation is presented: (1) moderate hydromagmatic (sequences HD 1–4) and magmatic (fallout deposits) activity from a central vent, probably over a period of months or years, affected an area slightly wider than the present caldera. At the end of this stage, intense seismic activity and extrusion of differentiated magma outside the caldera area occurred; (2) unhomogenized dacite was released during a hydromagmatic episode (HD 5). This was immediately followed by two major pyroclastic flows (PFD 1 and 2). The vents spread and intense magma-water interaction at the beginning of this stage decreased rapidly as magma discharge increased. Subsequent collapse of the caldera probably commenced in the southeastern sector of the caldera; (3) dacitic welded tuffs were emplaced during a second main phase (WFD 1–5). At the beginning of this phase, magma-water interaction continued, producing typical hydromagmatic deposits (HD 6). Caldera collapse extended to the northern part of the caldera. Previous C14 dates and records of explosive volcanism in ice from the south Pole show that the climactic phase of this event occurred in 1452 A.D.  相似文献   
13.
The tendency of network bright points (NBPs) to form in their surface distribution non-random, small-scale clusters is studied by a 2-D nearest-neighbours test, based on observational data for the distance between separate NBPs. High-resolution photographs taken from long time series obtained at4308 with the 50-cm refractor of Pic du Midi Observatory are used. Three different epochs of the solar cycle were chosen. The results obtained suggest that the degree of clustering depends on the solar cycle phase. Supposing that the NBPs are good tracers of the kilogauss small-scale magnetic field, we use them to obtain information about the subphotospheric small-scale magnetic field organisation and its dependence on the solar cycle phase.  相似文献   
14.
The Mambéré Formation constitutes a horizontal unit located in the western and southwestern part of the Central African Republic. Stratigraphical and sedimentological study provides strong argument to attribute these deposits a glacial origin. A palaeogeographical reconstruction has been outlined in order to precise the age of the formation. Two main categories of glacial deposits have been recognized:
  • glaciogenic deposits made of basal tills (with facetted pebbles) and flow tills (with flattened blunt pebbles);
  • reworked glacial deposits formed of sandstones and conglomeratic sandstones, in continuous beds, lenses or isolated blocks, together with siltstones and bedded sandstones.
  • The southerly provenance of the detrital material is demonstrated by quartz grain surface analysis and heavy-mineral study. This material results essentially from the dismantling of the Precambrian Schistoquartzitic Complex and secondarily from the Granitogneissic Complex. According to the palaeomagnetic polar paths and the migration of the glacial centers over the African continent during the Palaeozoic, the Mambéré Formation may be attributed a Lower Silurian age by reference to similar formations observed in Cameroon or a Lower Carboniferous age by comparison with the glacial formations reported from Niger and Egypt.  相似文献   
    15.
    The eastern part of the Guiana Shield, northern Amazonian Craton, in South America, represents a large orogenic belt developed during the Transamazonian orogenic cycle (2.26–1.95 Ga), which consists of extensive areas of Paleoproterozoic crust and two major Archean terranes: the Imataca Block, in Venezuela, and the here defined Amapá Block, in the north of Brazil.

    Pb-evaporation on zircon and Sm–Nd on whole rock dating were provided on magmatic and metamorphic units from southwestern Amapá Block, in the Jari Domain, defining its long-lived evolution, marked by several stages of crustal accretion and crustal reworking. Magmatic activity occurred mainly at the Meso-Neoarchean transition (2.80–2.79 Ga) and during the Neoarchean (2.66–2.60 Ga). The main period of crust formation occurred during a protracted episode at the end of Paleoarchean and along the whole Mesoarchean (3.26–2.83 Ga). Conversely, crustal reworking processes have dominated in Neoarchean times. During the Transamazonian orogenic cycle, the main geodynamic processes were related to reworking of older Archean crust, with minor juvenile accretion at about 2.3 Ga, during an early orogenic phase. Transamazonian magmatism consisted of syn- to late-orogenic granitic pulses, which were dated at 2.22 Ga, 2.18 Ga and 2.05–2.03 Ga. Most of the εNd values and TDM model ages (2.52–2.45 Ga) indicate an origin of the Paleoproterozoic granites by mixing of juvenile Paleoproterozoic magmas with Archean components.

    The Archean Amapá Block is limited in at southwest by the Carecuru Domain, a granitoid-greenstone terrane that had a geodynamic evolution mainly during the Paleoproterozoic, related to the Transamazonian orogenic cycle. In this latter domain, a widespread calc-alkaline magmatism occurred at 2.19–2.18 Ga and at 2.15–2.14 Ga, and granitic magmatism was dated at 2.10 Ga. Crustal accretion was recognized at about 2.28 Ga, in agreement with the predominantly Rhyacian crust-forming pattern of the eastern Guiana Shield. Nevertheless, TDM model ages (2.50–2.38 Ga), preferentially interpreted as mixed ages, and εNd < 0, point to some participation of Archean components in the source of the Paleoproterozoic rocks. In addition, the Carecuru Domain contains an oval-shaped Archean granulitic nucleus, named Paru Domain. In this domain, Neoarchean magmatism at about 2.60 Ga was produced by reworking of Mesoarchean crust, as registered in the Amapá Block. Crustal accretion events and calc-alkaline magmatism are recognized at 2.32 Ga and at 2.15 Ga, respectively, as well as charnockitic magmatism at 2.07 Ga.

    The lithological association and the available isotopic data registered in the Carecuru Domain suggests a geodynamic evolution model based on the development of a magmatic arc system during the Transamazonian orogenic cycle, which was accreted to the southwestern border of the Archean Amapá Block.  相似文献   

    16.
    Interpretation of the recent high-resolution survey, CANADOU 2000, in the Bay of Douarnenez (Finistère, France) allowed us to restore the morphology of the substratum and the sedimentary filling of the bay. The Brioverian and Palaeozoic substratum reveals a well-defined network of incised valleys as results of successive emergence stages of the Bay during the Quaternary. Valleys join in a westward-widened mean valley, called Ys Valley. The present-day sedimentary fill of the bay of Douarnenez appears mainly controlled by the Holocene rise and the consecutive highstand. It comprises fluvial and estuarine deposits filling up incised valleys and marine sedimentation extending out of the incised valleys. To cite this article: G. Jouet et al., C. R. Geoscience 335 (2003).To cite this article: G. Jouet et al., C. R. Geoscience 335 (2003).  相似文献   
    17.
    In central Tunisia, a synsedimentary tectonic episode has been pointed out through the tectonic movements affecting the Late Palaeocene–Early Eocene successions. This tectonic episode has controlled, to a large extent, the palaeogeographic setting of the area during that period and confirmed the important effect induced by the Pyrenean shortening phase on the edge of the African plate, which obviously has witnessed a common history with the southern part of the European plate. To cite this article: A. El Ghali et al., C. R. Geoscience 335 (2003).  相似文献   
    18.
    We present new data and interpretations on the Neogene tectonics of the Shan scarp area (central Myanmar) and its relationship with the India–Indochina oblique convergence. We describe ductile and brittle fabrics associated with the major features in this area, the Mogok Metamorphic Belt (MMB), the Shan scarp and the Sagaing fault. From these data we identify a succession of two tectonic regimes. First, a dominant NNW–SSE-trending extension, marked by ductile stretching that characterizes the MMB, and associated N70E brittle normal faults. Later, from Middle or Upper Miocene to the Present, these structures were cross-cut by brittle right-lateral faults, among which the most important are the N20W transpressive Shan scarp fault zone and the N–S Sagaing fault. To explain this transition from a dominant transtensive to a transpressive stress regime, that occurred during Miocene, we place our data within a larger geodynamic context. We suggest that, like the intraplate deformation in the Indian Ocean, the end of spreading in the South China sea, the opening of the Andaman basin or the end of subduction within the Indo-Burma range, the change in the tectonic regime in central Myanmar could be in response to a major Miocene regional plate kinematic reorganization.  相似文献   
    19.
    Kinetic parameters were determined for the first time, via open-system pyrolyses, on algaenans (highly resistant biomacromolecules that are selectively preserved during kerogen formation) isolated from extant microalgae. Parallel studies were also carried out on 10 kerogens exhibiting, with one exception, a low level of maturity. These kerogens included samples chiefly derived from the selective preservation of the above algaenans and samples mainly, or almost exclusively, derived from the “natural vulcanization” pathway. Important differences in activation energy (Ea) distributions were observed between the four algaenans investigated and correlated with their chemical structures. The kerogens predominantly derived from algaenan-selective preservation (Pula alginite, NE 70 and BJ 248 Torbanites, Rundle Oil Shale) also exhibited pronounced differences in Ea distributions. These distributions provided: (i) information on the diversity of the source materials; and (ii) reflected the occurrence of important differences in chemical structures and thermal behaviour between three of the tested kerogens, even though they are all classified as low maturity type I. The Kimmeridge Clay samples and the Lorca Oil Shale showed broad Ea distributions shifted to low energies when compared with the above algaenans and kerogens. Such shifts reflect an important (or even almost exclusive for some of these kerogens) contribution of materials originating from sulphur incorporation into various lipids during early diagenesis. Finally, the kinetic data derived for the nine low maturity fossil samples were extrapolated to a very low, geological heating rate of 3°C Ma−1 and the generation rate curves and cumulative yield curves thus obtained were compared.  相似文献   
    20.
     Ni-saturated montmorillonite from Camp-Bertaux heated at different temperatures has been studied by X-ray powder diffraction, X-ray absorption (EXAFS) and vibration IR spectroscopy. Analysis of the experimental data has shown that heating of samples at temperatures higher than 150° C was accompanied by migration of Ni cations into vacant cis-octahedra of 2:1 layers. In the octahedral sheet the Ni cation has two “heavy” (Fe) and four “light” (Al and Mg) nearest octahedral cations. A model for the octahedral cation distribution in Camp-Bertaux montmorillonite was proposed in which Fe and Mg octahedral cations are segregated in small clusters. Received July 7, 1996 / Revised, accepted August 23, 1996  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号