首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   2篇
  国内免费   3篇
测绘学   18篇
大气科学   39篇
地球物理   50篇
地质学   57篇
海洋学   24篇
天文学   34篇
自然地理   12篇
  2024年   1篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   6篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   17篇
  2012年   12篇
  2011年   12篇
  2010年   7篇
  2009年   14篇
  2008年   18篇
  2007年   14篇
  2006年   13篇
  2005年   14篇
  2004年   6篇
  2003年   11篇
  2002年   8篇
  2001年   6篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1993年   5篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1981年   4篇
  1980年   1篇
  1977年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有234条查询结果,搜索用时 156 毫秒
21.
Although analysis of clast macrofabrics has been used to differentiate between different types of glacial diamictons and to determine palaeo‐ice flow directions, no account appears to have been made of preferred clast orientations inherited from the parental source material. Clast macrofabrics in tills are typically interpreted as having developed in response to an imposed subglacial deformation and as such provide a link between the sedimentary record and glacier dynamics. They rely on the assumption that any preferred clast orientation is a result of deformation/flow. The results of the micromorphological study of the Langholm Till exposed at North Corbelly near Dumfries (southwestern Scotland) clearly demonstrate that bedrock structure can influence clast orientation (macrofabric) within diamictons. In the lower part of the till, the orientation of elongate clasts preserves the geometry of the tectonic cleavage present within the underlying bedrock. The intensity of this steeply inclined, ‘inherited’ clast fabric decreases upward through the till, to be replaced by a more complex pattern of successive generations of clast microfabrics developed in response to deformation/flow. These results indicate potential limitations of applying clast macrofabric or microfabric analysis in isolation to establish till genesis or palaeo ice‐flow directions. Consequently, due account should be made of other glacial palaeo‐environmental and ice flow indicators, as well as rockhead depth and morphology in relation to the selection of fabric measurements sites. © British Geological Survey/Natural Environment Research Council copyright 2007. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   
22.
23.
This essay proposes an innovative institutional strategy for global climate protection, quite distinct from but ultimately complementary to the UNFCCC climate treaty negotiations. Our “building block” strategy relies on a variety of smaller-scale transnational cooperative arrangements, involving not only states, but also subnational jurisdictions, firms, and civil society organizations, to undertake activities whose primary goal is not climate mitigation but which will achieve greenhouse gas reductions as a byproduct. This strategy avoids the problems inherent in developing an enforceable, comprehensive treaty regime by mobilizing other incentives—including economic self-interest, energy security, cleaner air, and furtherance of international development— to motivate a range of actors to cooperate on actions that will also produce climate benefits. The strategy uses three specific models of regime formation (club, linkage, and dominant actor models) which emerge from economics, international relations, and organizational behavior, to develop a variety of transnational regimes that are generally self-enforcing and sustainable, avoiding the free rider and compliance problems endemic in collective action to provide public goods. These regimes will contribute to global climate action not only by achieving emissions reductions in the short term, but also by creating global webs of cooperation and trust, and by linking the building block regimes to the UNFCCC system through greenhouse gas monitoring and reporting systems. We argue that the building blocks regimes would thereby help secure eventual agreement on a comprehensive climate treaty.  相似文献   
24.
Abstract— The petrogenesis of Apollo 12 mare basalts has been examined with emphasis on trace-element ratios and abundances. Vitrophyric basalts were used as parental compositions for the modelling, and proportions of fractionating phases were determined using the MAGFOX program of Longhi (1991). Crystal fractionation processes within crustal and sub-crustal magma chambers are evaluated as a function of pressure. Knowledge of the fractionating phases allows trace-element variations to be considered as either source related or as a product of post-magma-generation processes. For the ilmenite and olivine basalts, trace-element variations are inherited from the source, but the pigeonite basalt data have been interpreted with open-system evolution processes through crustal assimilation. Three groups of basalts have been examined: (1) Pigeonite basalts — produced by the assimilation of lunar crustal material by a parental melt (up to 3% assimilation and 10% crystal fractionation, with an “r” value of 0.3). (2) Ilmenite basalts — produced by variable degrees of partial melting (4–8%) of a source of olivine, pigeonite, augite, and plagioclase, brought together by overturn of the Lunar Magma Ocean (LMO) cumulate pile. After generation, which did not exhaust any of the minerals in the source, these melts experienced closed-system crystal fractionation/accumulation. (3) Olivine basalts — produced by variable degrees of partial melting (5–10%) of a source of olivine, pigeonite, and augite. After generation, again without exhausting any of the minerals in the source, these melts evolved through crystal accumulation. The evolved liquid counterparts of these cumulates have not been sampled. The source compositions for the ilmenite and olivine basalts were calculated by assuming that the vitrophyric compositions were primary and the magmas were produced by non-modal batch melting. Although the magnitude is unclear, evaluation of these source regions indicates that both be composed of early- and late-stage Lunar Magma Ocean (LMO) cumulates, requiring an overturn of the cumulate pile.  相似文献   
25.
26.
27.
28.
29.
30.
Preface     
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号