首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  国内免费   3篇
地球物理   5篇
地质学   17篇
海洋学   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  1996年   1篇
  1992年   1篇
  1984年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
11.
As the water concentration in magma decreases during magma ascent, olivine-hosted melt inclusions will reequilibrate with the host magma through hydrogen diffusion in olivine. Previous models showed that for a single spherical melt inclusion in the center of a spherical olivine, the rate of diffusive reequilibration depends on the partition coefficient and diffusivity of hydrogen in olivine, the radius of the melt inclusion, and the radius of the olivine. This process occurs within a few hours and must be considered when interpreting water concentration in olivine-hosted melt inclusions. A correlation is expected between water concentration and melt inclusion radius, because small melt inclusions are more rapidly reequilibrated than large ones when the other conditions are the same. This study investigates the effect of diffusive water loss in natural samples by exploring such a correlation between water concentration and melt inclusion radius, and shows that the correlation can be used to infer the initial water concentration and magma ascent rate. Raman and Fourier transform infrared spectroscopy measurements show that 31 melt inclusions (3.6–63.9 μm in radius) in six olivines from la Sommata, Vulcano Island, Aeolian Islands, have 0.93–5.28 wt% water, and the host glass has 0.17 wt% water. The water concentration in the melt inclusions shows larger variation than the data in previous studies (1.8–4.52 wt%). It correlates positively with the melt inclusion radius, but does not correlate with the major element concentrations in the melt inclusions, which is consistent with the hypothesis that the water concentration has been affected by diffusive water loss. In a simplified hypothetical scenario of magma ascent, the initial water concentration and magma ascent rate are inferred by numerical modeling of the diffusive water loss process. The melt inclusions in each olivine are assumed to have the same initial water concentration and magma ascent rate. The melt inclusions are assumed to be quenched after eruption (i.e., the diffusive water loss after eruption is not considered). The model results show that the melt inclusions initially had 3.9–5.9 wt% water and ascended at 0.002–0.021 MPa/s before eruption. The overall range of ascent rate is close to the lower limit of previous estimates on the ascent rate of basalts.  相似文献   
12.
13.
The New Caledonia ophiolite(Peridotite Nappe)consists primarily of harzburgites,locally overlain by mafic-ultramafic cumulates,and minor spinel and plagioclase lherzolites.In this study,a comprehensive geochemical data set(major and trace element,Sr-Nd-Pb isotopes)has been obtained on a new set of fresh harzburgites in order to track the processes recorded by this mantle section and its evolution.The studied harzburgites are low-strain tectonites showing porphyroclastic textures,locally grading into protomylonitic textures.They exhibit a refractory nature,as attested by the notable absence of primary clinopyroxene,very high Fo content of olivine(91-93 mol.%),high Mg#of orthopyroxene(0.91-0.93)and high Cr#of spinel(0.44-0.71).The harzburgites are characterised by remarkably low REE concentrations(<0.1 chondritic values)and display"U-shaped"profiles,with steeply sloping HREE(DyN/YbN=0.07-0.16)and fractionated LREE-MREE segments(LaN/SmN=2.1-8.3),in the range of modern fore-arc peridotites.Geochemical modelling shows that the HREE composition of the harzburgites can be reproduced by multi-stage melting including a first phase of melt depletion in dry conditions(15%fractional melting),followed by hydrous melting in a subduction zone setting(up to 15%-18%).However,melting models fail to explain the enrichments observed for some FME(i.e.Ba,Sr,Pb),LREE-MREE and Zr-Hf.These enrichments,coupled with the frequent occurrence of thin,undeformed films of Al2 O3,and CaO-poor orthopyroxene(Al2O3=0.88-1.53 wt.%,CaO=0.31-0.56 wt.%)and clinopyroxene with low Na2 O(0.03-0.16 wt.%),Al2 O3(0.66-1.35 wt.%)and TiO2(0.04-0.10 wt.%)contents,point to FME addition during fluid-assisted melting followed by late stage metasomatism most likely operated by subductionrelated melts with a depleted trace element signature.Nd isotopic ratios range from unradiogenic to radiogenic(-0.80<εNdi≤+13.32)and negatively correlate with Sr isotopes(0.70257≤87Sr/86Sr≤0.70770).Pb isotopes cover a wide range,trending from DMM toward enriched,sediment-like,compositions.We interpret the geochemical signature displayed by the New Caledonia harzburgites as reflecting the evolution of a highly depleted fore-arc mantle wedge variably modified by different fluid and melt inputs during Eocene subduction.  相似文献   
14.
The rate of water loss from olivine-hosted melt inclusions   总被引:1,自引:1,他引:0  
Diffusive water loss from olivine-hosted melt inclusions has been reported previously. This process must be considered when interpreting melt inclusion data. This study measured the rate of water loss from olivine-hosted melt inclusions during heating-stage experiments to test a previous diffusive reequilibration model and the hydrogen diffusion mechanism that controls the rate. Olivine-hosted melt inclusions were heated to a constant temperature in reduced Ar gas in a heating stage for a few hours, and unpolarized Fourier transform infrared spectra were repeatedly measured through the inclusions. Water loss occurred rapidly in the experiments. Within a few hours, the water absorbance at 3,500 cm−1 wavenumber decreased by half. The observed water loss rate can be explained by the diffusive reequilibration model and hydrogen diffusion in olivine coupled with metal vacancy. The beginning of water loss was different in the low- and high-temperature experiments. At low temperatures (1,423 and 1,437 K), water loss did not occur in the initial 1 or 2 h. At high temperatures (1,471–1,561 K), water loss began immediately. The initial time period without water loss at low temperatures may be explained by a hydrogen fugacity barrier in the host olivine. At low temperatures, the internal pressure may be lower than the equilibrium pressure of melt inclusion and olivine, causing lower hydrogen fugacity in the melt inclusion than in the olivine, which will delay the water loss from the melt inclusion. The tested model and diffusivity were used to estimate the rate of water loss during homogenization experiments and magma eruption and cooling. For 1-h homogenization experiment, the model shows that large inclusions (50 μm radius) in large olivines (500 μm radius) are robust against water loss, while large or small inclusions (50–10 μm radius) in small olivines (150 μm radius) may suffer 30–100% water loss. For natural samples, the correlation between water concentration and melt inclusion and olivine sizes may be helpful to infer the initial water concentration, degree of diffusive reequilibration, and magma cooling rate.  相似文献   
15.
Abstract   In southern New Caledonia, Late Oligocene granodiorite and adamellite are intruded into an ultramafic allochthon emplaced in the Late Eocene period. Previous studies of these granitoids proposed an origin associated with the melting of the underlying continental crust, but our new data show that these high-K to medium-K calc-alkaline granitoids display the geochemical and isotopic features of volcanic arc magmas uncontaminated by crust-derived melts. These magmas were probably generated in a post-Eocene and pre-Miocene subduction, the geophysical traces of which have been detected along the western coast of New Caledonia. Sr, Nd and Pb isotopic ratios indicate derivation from an almost isotopically homogeneous mantle wedge, but in contrast, some variation in trace element ratios uncorrelated to differentiation is indicative of source heterogeneity. Prominent heavy rare earth element (HREE) depletion of some of the younger granitoids may be the result of an equilibrium achieved with garnet-bearing subcrustal material (granulite) found as xenoliths, while a relative Nb, Ta and Hf enrichment, irrespective of crystal fractionation, may be related to either a modest contamination by previously underplated mafic material, heterogeneous hydration of the mantle wedge, or mixing with uplifted Nb-rich mantle. Post-obduction slab break-off can be proposed to have played a role in sublithospheric mantle mixing and the subsequent heterogeneity. The Late Oligocene subduction described here may be tentatively extended southward into northern New Zealand allochthons.  相似文献   
16.
The New Caledonia ophiolite hosts one of the rare examples of crust-mantle sections built in a nascent arc environment, providing the unique opportunity to investigate the first stages of arc magmatism in a subduction setting. The sequence consists of refractory harzburgites, overlain by ultramafic (dunites and wehrlites) and mafic lithologies (gabbronorites). The gabbronorites occur in the upper part of the sequence as decimetre to metre-size sills. They are mainly formed (??55 to 70 vol%) of Ca-rich plagioclase (An up to 96 mol%) and high Mg# (88–92), Al2O3-poor (1.5–2.4 wt%) clinopyroxene (8–20 vol%), often rimmed by interstitial or poikilitic orthopyroxene (6–27 vol%). Mg-rich olivine (3–15 vol%, Fo?=?87–89 mol%) occurs as anhedral, resorbed crystals. Whole rock (WR) compositions exhibit high Mg# (86–92) and strikingly low trace element contents. They own LREE-depleted patterns, with nearly flat (0.82?≤?DyN/YbN?≤?1.00) and low HREE (YbN?=?0.2–0.9) and positive Eu anomalies. Clinopyroxene trace element chemistry mirrors the extreme depletion of the WR. By contrast, FME enrichments are observed for WR and clinopyroxene. Geochemical models show that the gabbronorites crystallized from primitive, ultra-depleted melts bearing evidence of fluid contamination processes, but with significantly different geochemical signatures compared to boninitic rocks worldwide, i.e. lower LREE-MREE, and absence of Nb depletion and Zr–Hf enrichments. Nd isotopes (+?8.2?≤?εNdi?≤?+?13.1), together with radiogenic Pb isotopic ratios, support an origin from a DMM source variably modified by slab fluids. We propose that the geochemical signature of the New Caledonia gabbronorites reflect emplacement of primitive, non-aggregated, magma batches in the lower fore-arc crust, during the first phases of arc formation.  相似文献   
17.
Decompression experiments of a crystal-free rhyolitic liquid with ≈ 6.6 wt. % H2O were carried out at a pressure range from 250 MPa to 30–75 MPa in order to characterize effects of magma ascent rate and temperature on bubble nucleation kinetics, especially on the bubble number density (BND, the number of bubbles produced per unit volume of liquid). A first series of experiments at 800°C and fast decompression rates (10–90 MPa/s) produced huge BNDs (≈ 2 × 1014 m−3 at 10 MPa/s ; ≈ 2 × 1015 m−3 at 90 MPa/s), comparable to those in natural silicic pumices from Plinian eruptions (1015–1016 m−3). A second series of experiments at 700°C and 1 MPa/s produced BNDs (≈ 9×1012 m−3) close to those observed at 800°C and 1 MPa/s (≈ 6 × 1012 m−3), showing that temperature has an insignificant effect on BNDs at a given decompression rate. Our study strengthens the theory that the BNDs are good markers of the decompression rate of magmas in volcanic conduits, irrespective of temperature. Huge number densities of small bubbles in natural silicic pumices from Plinian eruptions imply that a major nucleation event occurs just below the fragmentation level, at which the decompression rate of ascending magmas is a maximum (≥ 1 MPa/s).  相似文献   
18.
Laser-probe dating of mylonite whole-rock samples from the North Tianshan—Main Tianshan fault zone that cross-cuts the North Tianshan domain’s southern margin yielded 40Ar/39Ar spectra with 255–285 Ma ages. Biotite from an undeformed, Early Carboniferous granite, which cuts the steep mylonitic foliation in the Proterozoic basement of the Yili arcs’s southern margin, gave a 263.4 ± 0.6 Ma plateau age (1σ). Pre-Carboniferous metasediments overlying this basement yielded plateau ages (1σ) of 253.3 ± 0.3 (muscovite) and 252.3 ± 0.3 (biotite) Ma. The Permian ages of mylonites date movement on these ductile, dextral strike-slip shear zones, whereas the mica ages are interpreted by recrystallisation as a result of fluid flow around such transcurrent faults. We propose that the Tianshan’s Permian syn-tectonic bimodal magmatism was created in a non-plume-related Yellowstone-like extensional–transtensional tectonic regime. Gold mineralisation, tracing aqueous flow in the crust, peaked in Permian time and continued locally into the Triassic. The picture is emerging that a convective fluid system partly driven by magmatic heat, existed in a strongly fractured and weakened crust with an elevated heat flow, leading to regional-scale isotope resetting. We suggest that surprisingly young isotopic ages in the literature for early orogenic (ultra)high-pressure metamorphism are similarly due to fluid-mediated recrystallisation.  相似文献   
19.
In the southern Chinese Tianshan, the southernmost part of the Central Asian Orogenic Belt (CAOB), widespread ophiolitic mélanges form distinct tectonic units that are crucial for understanding the formation of the CAOB. However, the timing of tectonic events and the subduction polarity are still in controversy. In order to better understand these geological problems, a comprehensive study was conducted on the Heiyingshan ophiolitic mélange in the SW Chinese Tianshan. Detailed structural analysis reveals that the ophiolitic mélange is tectonically underlain by sheared and weakly metamorphosed pre-Middle Devonian rocks, and unconformably overlain by non-metamorphic and undeformed lower Carboniferous (Serpukhovian) to Permian strata. The igneous assemblage of the mélange comprises OIB-like alkali basalt and andesite, N-MORB-like tholeiitic basalt, sheeted diabase dikes, cumulate gabbro and peridotite. Mafic rocks display supra-subduction signatures, and some bear evidence of contamination with the continental crust, suggesting a continental marginal (back-arc) basin setting. Zircons of a gabbro were dated at 392 ± 5 Ma by the U–Pb LA-ICP-MS method. Famennian–Visean radiolarian microfossils were found in the siliceous matrix of the ophiolitic mélange. Mylonitic phyllite which displays northward-directed kinematic evidence yielded muscovite 40Ar/39Ar plateau ages of 359 ± 2 Ma and 356 ± 2 Ma.These new data, combined with previously published results, suggest that the mafic protoliths originally formed in a back-arc basin in the Chinese southern Tianshan during the late Silurian to Middle Devonian and were subsequently incorporated into the ophiolitic mélange and thrust northward during the Late Devonian to early Carboniferous. Opening of the back-arc basin was probably induced by south-dipping subduction of the Paleo-Tianshan Ocean in the early Paleozoic, and the Central Tianshan block was rifted away from the Tarim block. Closure of the back-arc basin in the early Carboniferous formed the South Tianshan Suture Zone and re-amalgamated the two blocks.  相似文献   
20.
The December 1981 — January 1982 eruption which started in the Christmas night on the SE side of Nyamulagira, gave the longest historical flow (26 km) representing the highest production rate of this volcano in this century (280×106m3 of erupted magmas in 19 days). This eruption built Rugarambiro, a composite spatter cinder-cone. The ejected lava is a K-hawaiite (kivite) whose basicity decreased during the eruption (first emission: D.I. = 40; last products: D.I. = 35). This chemical evolution is reflected by:
  • --the modal composition of lavas. The first emissions are poor in ferromagnesian phenocrysts (olivine + clinopyroxene: 3%) and rich in plagioclase (12%); the contrary is observed in the last ejected lavas (livine + Cpx: 16%; plagioclase: 1%);
  • --the nature of the crystallizing minerals in the groundmass. In fact, only the first ejections include alkaline feldspars, nepheline and Tiphlogopite;
  • --the glassy phase composition which is more differentiated in the first lavas (D.I. 68–84) than in the last ones (D.I. 42–61).
  • A stratification of the Nyamulagira magmatic chamber is proposed where magmatic differentiation has probably occurred for fractional crystallization. Mineralogical thermobarometers lead to locate this magmatic reservoir at the depth of 6–7 km that we had already hypothesized. The presence of phenocrysts of bytownite, basic chrysolite, diopside and salite indicates a basaltic paragenesis which marks a hawaiitic magma chamber feeding.  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号