首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   3篇
  国内免费   3篇
测绘学   6篇
大气科学   5篇
地球物理   9篇
地质学   31篇
海洋学   3篇
天文学   9篇
自然地理   1篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2017年   7篇
  2016年   3篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2010年   2篇
  2009年   6篇
  2008年   3篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   2篇
  1996年   3篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1972年   2篇
排序方式: 共有64条查询结果,搜索用时 109 毫秒
41.
An attempt to diagnose the dominant forcings which drive the large-scale vertical velocities over the monsoon region has been made by computing the forcings like diabatic heating fields,etc. and the large-scale vertical velocities driven by these forcings for the contrasting periods of active and break monsoon situations; in order to understand the rainfall variability associated with them. Computation of diabatic heating fields show us that among different components of diabatic heating it is the convective heating that dominates at mid-tropospheric levels during an active monsoon period; whereas it is the sensible heating at the surface that is important during a break period. From vertical velocity calculations we infer that the prime differences in the large-scale vertical velocities seen throughout the depth of the atmosphere are due to the differences in the orders of convective heating; the maximum rate of latent heating being more than 10 degrees Kelvin per day during an active monsoon period; whereas during a break monsoon period it is of the order of 2 degrees Kelvin per day at mid-tropospheric levels. At low levels of the atmosphere, computations show that there is large-scale ascent occurring over a large spatial region, driven only by the dynamic forcing associated with vorticity and temperature advection during an active monsoon period. However, during a break monsoon period such large-scale spatial organization in rising motion is not seen. It is speculated that these differences in the low-level large-scale ascent might be causing differences in convective heating because the weaker the low level ascent, the lesser the convective instability which produces deep cumulus clouds and hence lesser the associated latent heat release. The forcings due to other components of diabatic heating, namely, the sensible heating and long wave radiative cooling do not influence the large-scale vertical velocities significantly.  相似文献   
42.
Based on the theory given by Saltzman and Ashe (1976), sensible heat fluxes are calculated for the active and break phases of the southwest monsoon over the Indian region. The conclusion drawn is that the sensible heat flux is generally larger during the break monsoon situation when compared with that for the active monsoon situation. The synoptic heat flux is negligible when compared with mean and diurnal heat fluxes over the Indian region even during the monsoon season.  相似文献   
43.
Summary This paper studies axial Rayleigh waves in visco-elastic cylinder surrounded by vacuum and for body of same material with a cylindrical cavity. Magneto-elastic equations of motion for wave propagation in the radial and axial direction have been solved to obtain frequency equations.  相似文献   
44.
The aim of the present study is to identify the geochemical processes responsible for higher fluoride (F) content in the groundwater of the Yellareddigudem watershed located in Nalgonda district, Andhra Pradesh. The basement rocks in the study area comprise mainly of granites (pink and grey varieties), which contain F-bearing minerals (fluorite, biotite and hornblende). The results of the study area suggest that the groundwater is characterized by Na+: HCO facies. The F content varies from 0.42 to 7.50 mg/L. In about 68% of the collected groundwater samples, the concentration of F exceeds the national drinking water quality limit of 1.5 mg/L. The weathering of the granitic rocks causes the release of Na+ and HCO ions, which increase the solubility of ions. Ion exchange between Na+ and Ca2+, and precipitation of CaCO3 reduce the activity of Ca2+. This favours dissolution of CaF2 from the F-bearing minerals present in the host rocks, leading to a higher concentration of F in the groundwater. The study further suggests that the spatial variation in the F content appears to be caused by difference in the relative occurrence of F-bearing minerals, the degree of rockweathering and fracturing, the residence time of water in the aquifer materials and the associated geochemical processes. The study emphasizes the need for appropriate management measures to mitigate the effect of higher F groundwater on human health.  相似文献   
45.
Mercury was determined in thirty‐three international stream sediment and soil reference samples (eleven Chinese soils, GSS‐1 to GSS‐11; twelve Chinese stream sediments, GSD‐1A to GSD‐12; four Canadian stream sediments STSD‐1 to STSD‐4; South African stream sediments, SARM‐42, SARM‐46 and SARM‐47; Japanese stream sediments, JSd‐1 to JSd‐3) by direct mercury analyser. Samples were taken in 500 μl quartz boats, placed in an auto sampler and processed (drying time 60 s at 300 °C; decomposition time 120 s at 850 °C; waiting time 45 s). The instrument was calibrated in the low (0‐50 ng) and high ranges (50‐500 ng) with two reference materials GSS‐5 and GXR‐2 (USGS). Using the calibration line, reference samples were analysed for Hg. The results of the determinations agreed with the recommended values of RMs in all cases except JSd‐1. The RSD calculated for the RMs was found to be within 20%. The detection limit was 1 ng g?1.  相似文献   
46.
The construction of a Giant Sea Wall (GSW) complex in Jakarta Bay has been proposed to protect Jakarta against flood in the Master Plan for National Capital Integrated Coastal Development (NCICD). However, these large-scale hydraulic structures could significantly change the tidal dynamics in Jakarta Bay. This research investigates the potential impacts of a GSW on the tidal dynamics, including tides, currents, and residual currents in Jakarta Bay using a validated numerical model (Finite Volume Coastal Ocean Model (FVCOM)). Results show that the bay is diurnal with a maximum tidal range of ~0.9 m. The flow is mainly in an east-west direction with a maximum depth-mean current speed of up to 0.3 ms?1. The construction of a GSW would modulate the tidal dynamics by changing the bathymetry, tidal prism, wind effect, and tidal choking effect in the bay. The maximum tidal range would be slightly increased due to the reduced tidal prism of the bay and the increased tidal choking effect. The current would penetrate into the west reservoir through the gates and channels between the artificial islands, with peak speed jets appearing at the gates (~0.3 ms?1), due to tidal choking. A similar peak current speed appears near the right wing of the GSW due to the pressure gradient would be created by the wing of the GSW. Closing the gates would mainly affect the currents inside the west reservoir. The residual current would be slightly increased after the construction of the GSW. An eddy would be formed at the bottom level near the right wing of the GSW. The direction of the residual current is landward instead of seaward at the surface level outside the GSW. The impact of wind on surface currents would be much reduced due to the decreased water surface area. Although this study is site specific, the findings may have a wider applicability to the impacts of large-scale hydraulic structures on tidal dynamics in open-type bays.  相似文献   
47.
High‐precision isotope data of meteorites show that the long‐standing notion of a “chondritic uniform reservoir” is not always applicable for describing the isotopic composition of the bulk Earth and other planetary bodies. To mitigate the effects of this “isotopic crisis” and to better understand the genetic relations of meteorites and the Earth‐forming reservoir, we performed a comprehensive petrographic, elemental, and multi‐isotopic (O, Ca, Ti, Cr, Ni, Mo, Ru, and W) study of the ungrouped achondrites NWA 5363 and NWA 5400, for both of which terrestrial O isotope signatures were previously reported. Also, we obtained isotope data for the chondrites Pillistfer (EL6), Allegan (H6), and Allende (CV3), and compiled available anomaly data for undifferentiated and differentiated meteorites. The chemical compositions of NWA 5363 and NWA 5400 are strikingly similar, except for fluid mobile elements tracing desert weathering. We show that NWA 5363 and NWA 5400 are paired samples from a primitive achondrite parent‐body and interpret these rocks as restite assemblages after silicate melt extraction and siderophile element addition. Hafnium‐tungsten chronology yields a model age of 2.2 ± 0.8 Myr after CAI, which probably dates both of these events within uncertainty. We confirm the terrestrial O isotope signature of NWA 5363/NWA 5400; however, the discovery of nucleosynthetic anomalies in Ca, Ti, Cr, Mo, and Ru reveals that the NWA5363/NWA 5400 parent‐body is not the “missing link” that could explain the composition of the Earth by the mixing of known meteorites. Until this “missing link” or a direct sample of the terrestrial reservoir is identified, guidelines are provided of how to use chondrites for estimating the isotopic composition of the bulk Earth.  相似文献   
48.
The change in the type of vegetation fraction can induce major changes in the local effects such as local evaporation, surface radiation, etc., that in turn induces changes in the model simulated outputs. The present study deals with the effects of vegetation in climate modeling over the Indian region using the MM5 mesoscale model. The main objective of the present study is to investigate the impact of vegetation dataset derived from SPOT satellite by ISRO (Indian Space Research Organization) versus that of USGS (United States Geological Survey) vegetation dataset on the simulation of the Indian summer monsoon. The present study has been conducted for five monsoon seasons (1998–2002), giving emphasis over the two contrasting southwest monsoon seasons of 1998 (normal) and 2002 (deficient). The study reveals mixed results on the impact of vegetation datasets generated by ISRO and USGS on the simulations of the monsoon. Results indicate that the ISRO data has a positive impact on the simulations of the monsoon over northeastern India and along the western coast. The MM5-USGS has greater tendency of overestimation of rainfall. It has higher standard deviation indicating that it induces a dispersive effect on the rainfall simulation. Among the five years of study, it is seen that the RMSE of July and JJAS (June–July–August–September) for All India Rainfall is mostly lower for MM5-ISRO. Also, the bias of July and JJAS rainfall is mostly closer to unity for MM5-ISRO. The wind fields at 850 hPa and 200 hPa are also better simulated by MM5 using ISRO vegetation. The synoptic features like Somali jet and Tibetan anticyclone are simulated closer to the verification analysis by ISRO vegetation. The 2 m air temperature is also better simulated by ISRO vegetation over the northeastern India, showing greater spatial variability over the region. However, the JJAS total rainfall over north India and Deccan coast is better simulated using the USGS vegetation. Sensible heat flux over north-west India is also better simulated by MM5-USGS.  相似文献   
49.
The thermodynamic structure and the heights of the boundary layer over the monsoon trough region of the Indian southwest monsoon are presented for the active and break phases of the monsoon. Results indicate significant and consistent variation in boundary-layer heights between the active and break phases.  相似文献   
50.
Fluorine distribution in waters of Nalgonda District, Andhra Pradesh, India   总被引:5,自引:0,他引:5  
Geochemical and hydrochemical studies were conducted in Nalgonda District (A.P.), to explore the causes of high fluorine in waters, causing a widespread incidence of fluorosis in the local population. Samples of granitic rocks, soils, stream sediments, and waters were analyzed for F and other salient chemical parameters. Samples from the area of Hyderabad city were analyzed for comparison. The F content of waters in areas with endemic fluorosis ranges from 0.4 to 20 mg/l. The low calcium content of rocks and soils, and the presence of high levels of sodium bicarbonate in soils and waters are important factors favoring high levels of F in waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号