首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   577篇
  免费   22篇
  国内免费   4篇
测绘学   26篇
大气科学   38篇
地球物理   171篇
地质学   283篇
海洋学   33篇
天文学   26篇
综合类   3篇
自然地理   23篇
  2024年   1篇
  2023年   4篇
  2022年   11篇
  2021年   14篇
  2020年   10篇
  2019年   7篇
  2018年   46篇
  2017年   39篇
  2016年   39篇
  2015年   31篇
  2014年   49篇
  2013年   34篇
  2012年   37篇
  2011年   47篇
  2010年   33篇
  2009年   26篇
  2008年   14篇
  2007年   11篇
  2006年   12篇
  2005年   37篇
  2004年   55篇
  2003年   26篇
  2002年   3篇
  2001年   3篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1984年   1篇
排序方式: 共有603条查询结果,搜索用时 31 毫秒
161.
Sedimentary basins are suitable to different degrees for CO 2 geological sequestration as a result of various intrinsic and extrinsic characteristics, of which the geothermal regime is one of the most important. Warm basins are less favorable for CO 2 sequestration than cold basins because of reduced capacity in terms of CO 2 mass, and because of higher CO 2 buoyancy, which drives the upward CO 2 migration. A set of 15 criteria, with several classes each, has been developed for the assessment and ranking of sedimentary basins in terms of their suitability for CO 2 sequestration. Using a parametric normalization procedure, a basin's individual scores are summed to a total score using weights that express the relative importance of different criteria. The total score is ranked to determine the most suitable basin or region thereof for the geological sequestration of CO 2. The method is extremely flexible in that it allows changes in the functions that express the importance of various classes for any given criterion, and in the weights that express the relative importance of various criteria. Examples of application are given for Canada's case and for the Alberta basin in Canada.  相似文献   
162.
Local deformation monitoring using GPS in an open pit mine: initial study   总被引:1,自引:0,他引:1  
High-performance GPS RTK software has been developed within the Geodetic Research Laboratory (GRL) at the University of New Brunswick (UNB). This software was initially designed for gantry crane auto-steering. Due to limitations with classical geodetic deformation monitoring techniques, the Canadian Centre for Geodetic Engineering (CCGE) at UNB has decided to augment its fully automated deformation monitoring system with GPS. As a result, the GRL and CCGE have combined efforts to achieve the required precision. As a first step, tests of the GPS real-time kinematic (RTK) software have been carried out at Highland Valley Copper Mine in British Columbia, Canada. An open-pit mine environment places certain constraints on the achievable accuracies attainable with GPS. Consequently, the software has been modified to meet the needs of this particular project and data have been post-processed for analysis. This paper describes the approach taken at UNB to address high precision requirements in a constrained signal availability environment. Technical and scientific aspects of the UNB software, especially in handling two predominant errors (residual tropospheric zenith delay and multipath) at the mine, are discussed. Results of tests that have been carried out at the mine are presented.  相似文献   
163.
This study aims to demonstrate the potential of a process-based regional ecosystem model, LPJ-GUESS, driven by climate scenarios generated by a regional climate model system (RCM) to generate predictions useful for assessing effects of climatic and CO2 change on the key ecosystem services of carbon uptake and storage. Scenarios compatible with the A2 and B2 greenhouse gas emission scenarios of the Special Report on Emission Scenarios (SRES) and with boundary conditions from two general circulation models (GCMs) – HadAM3H and ECHAM4/OPYC3 – were used in simulations to explore changes in tree species distributions, vegetation structure, productivity and ecosystem carbon stocks for the late 21st Century, thus accommodating a proportion of the GCM-based and emissions-based uncertainty in future climate development. The simulations represented in this study were of the potential natural vegetation ignoring direct anthropogenic effects. Results suggest that shifts in climatic zones may lead to changes in species distribution and community composition among seven major tree species of natural Swedish forests. All four climate scenarios were associated with an extension of the boreal forest treeline with respect to altitude and latitude. In the boreal and boreo-nemoral zones, the dominance of Norway spruce and to a lesser extent Scots pine was reduced in favour of deciduous broadleaved tree species. The model also predicted substantial increases in vegetation net primary productivity (NPP), especially in central Sweden. Expansion of forest cover and increased local biomass enhanced the net carbon sink over central and northern Sweden, despite increased carbon release through decomposition processes in the soil. In southern Sweden, reduced growing season soil moisture levels counterbalanced the positive effects of a longer growing season and increased carbon supply on NPP, with the result that many areas were converted from a sink to a source of carbon by the late 21st century. The economy-oriented A2 emission scenario would lead to higher NPP and stronger carbon sinks according to the simulations than the environment-oriented B2 scenario.  相似文献   
164.
Summary ?One of the most important features in analysing the climatology of any region is to study the precipitation and its periodicity of different harmonics in order to study the behavior of the observed data. In this study the amplitude of frequencies, phase angle and basic statistical parameters are calculated in order to depict spatial characteristics of precipitation over Jordan. Precipitation records of 17 stations were chosen according to climatic regions of Jordan. The first and second harmonic analyses explain more than 90% of the precipitation variation in Jordan effectively. The amplitudes of the first and second harmonic were calculated in order to describe the climatic regions in the country. The maximum amplitudes were found in the northern mountainous region. The phase angle representing the time of maximum rainfall is also used in the form of a contour chart. It is found that Jordan has its main rainfall season in winter with maximum around January. The coefficient of variation shows the high variability of rainfall of the country. Received February 4, 2002; revised August 1, 2002; accepted August 6, 2002  相似文献   
165.
 Ankara Creek is often subjected to overflowing of sewage caused by rainfall or direct discharge of raw sewage. Alluvial aquifers adjacent to Ankara Creek and its tributaries have considerable groundwater potential. The present status of groundwater quality is far from drinking water standards. Groundwater contamination in Ankara is suspected to be caused by Ankara Creek which is heavily polluted by raw sewage discharge, surface runoff and other common sources. In order to investigate the influence of heavily polluted Ankara Creek on the groundwater contamination in the adjacent alluvial aquifers, five sampling stations on Ankara Creek and 25 water wells were monitored during 1996. At five different sampling periods, water samples were collected from both surface water and groundwater. Chemical analyses of basic ions, pollution parameters and heavy metals in natural waters were carried out. The organic pollution prevails in Ankara Creek whereas total dissolved solids (TDS) and heavy metal concentrations are considerably low. Starting from the idea that Ankara Creek somewhat influences the groundwater quality and the contaminants in groundwater should attenuate with respect to distance, a series of water wells in a certain area, each having different distance from the creek, were examined using four pollution parameters. It is concluded that Ankara Creek barely influences the aquifer systems in connection. This is attributed to two reasons: rapid attenuation of contaminants due to dilution in groundwater and a blanket of very fine sized materials covering the bottom of Ankara Creek. Received: 28. April 1997 · Accepted: 23. February 1998  相似文献   
166.
Geomagnetism and Aeronomy - The comparison of the Quasi Biennial Oscillation (QBO) and F10.7 solar flux effects on Total Mass Density (TMD) obtained from NRLMSIS-00 model for 90 km altitude of...  相似文献   
167.
Numerical techniques for subsurface flow and transport modeling are often limited by computational limitations including fine mesh and small time steps to control artificial dispersion. Particle-tracking simulation offers a robust alternative for modeling solute transport in subsurface formations. However, the modeling scale usually differs substantially from the rock measurement scale, and the scale-up of measurements have to be made accounting for the pattern of spatial heterogeneity exhibited at different scales. Therefore, it is important to construct accurate coarse-scale simulations that are capable of capturing the uncertainties in reservoir and transport attributes due to scale-up. A statistical scale-up procedure developed in our previous work is extended by considering the effects of unresolved (residual) heterogeneity below the resolution of the finest modeling scale in 3D. First, a scale-up procedure based on the concept of volume variance is employed to construct realizations of permeability and porosity at the (coarse) transport modeling scale, at which flow or transport simulation is performed. Next, to compute various effective transport parameters, a series of realizations exhibiting detailed heterogeneities at the fine scale, whose domain size is the same as the transport modeling scale, are generated. These realizations are subjected to a hybrid particle-tracking simulation. Probabilistic transition time is considered, borrowing the idea from the continuous time random walk (CTRW) technique to account for any sub-scale heterogeneity at the fine scale level. The approach is validated against analytical solutions and general CTRW formulation. Finally, coarse-scale transport variables (i.e., dispersivities and parameterization of transition time distribution) are calibrated by minimizing the mismatch in effluent history with the equivalent averaged models. Construction of conditional probability distributions of effective parameters is facilitated by integrating the results over the entire suite of realizations. The proposed method is flexible, as it does not invoke any explicit assumption regarding the multivariate distribution of the heterogeneity. In contrast to other hierarchical CTRW formulation for modeling multi-scale heterogeneities, the proposed approach does not impose any length scale requirement regarding sub-grid heterogeneities. In fact, it aims to capture the uncertainty in effective reservoir and transport properties due to the presence of heterogeneity at the intermediate scale, which is larger than the finest resolution of heterogeneity but smaller than the representative elementary volume, but it is often comparable to the transport modeling scale.  相似文献   
168.
In this study, two different historical structures built in Trabzon have been processed by ambient vibrations and seismic refraction measurements. One of the investigated historical structures is the Atatürk Pavilion built in the nineteenth century, and the other one is Hagia Sophia which was built in the thirteenth century. These two buildings are among the most important historical buildings in Trabzon and are very important for the tourism of the city. In order to determine peak/s frequency and amplitude from the horizontal-to-vertical spectral ratios (HVSRs), we have performed several measurements of ambient vibrations both inside (at different floors) and outside (on the ground) of structures. We have also conducted seismic prospecting to evaluate the vertical 1D and 2D profile of longitudinal and shear seismic waves, Vp and Vs, respectively. To this purpose, we have performed seismic refraction tomography and MASW. Ambient vibrations and seismic measurements were compared with each other. The results show that average predominant frequencies and HVSR amplitudes of inside and outside of Atatürk Pavilion are 4.0 Hz, 7.8 Hz and 2.6, 2.3, respectively. The Vp values vary from 300 to 2070 m/s, and the Vs for maximum effective depth is up to 790 m/s in Atatürk Pavilion. On the other hand, average predominant frequencies and HVSR amplitudes of inside and outside of Hagia Sophia and its tower are 4.7, 4.4 and 2.4 Hz and 1.6, 1.8 and 6.9, respectively. Vp values range from 450 to 2200 m/s, and Vs for maximum effective depth is also up to 1000 m/s in Hagia Sophia. The frequency values (F0?=?Vs/4 h) calculated from the velocities up to the maximum effective depth for Atatürk Pavilion are in good agreement with the predominant frequency values determined from ambient vibrations. Atatürk Pavilion and Hagia Sophia soils have been classed according to Eurocode 8 by using VS30 values. The class was defined as “B.” Moreover, the bedrock in studied area is basalt. The high Vp and Vs values are also compatible with the lithology. The HVSR curves measured at the Hagia Sophia show the presence of clear peaks when compared to the Atatürk Pavilion. At the same time, there are marked velocity changes in the Vs sections calculated in both areas. As a result, in both areas there are significant impedance contrasts in the subsoil. However, this impedance contrast is more evident in Hagia Sophia. This could be also compatible with a lithological transition. The possible soil–structure interaction was investigated by using all the results and evaluated in terms of resonance risk. It is thought that the probability of resonance risk at Atatürk Pavilion is low according to the ambient vibrations measurements. However, resonance risk should be taken into consideration at Hagia Sophia site since the predominant frequency values are very close to each other. Finally, this site should be investigated in detail and necessary precautions should be taken against the risk of resonance.  相似文献   
169.
Gaussian conditional realizations are routinely used for risk assessment and planning in a variety of Earth sciences applications. Assuming a Gaussian random field, conditional realizations can be obtained by first creating unconditional realizations that are then post-conditioned by kriging. Many efficient algorithms are available for the first step, so the bottleneck resides in the second step. Instead of doing the conditional simulations with the desired covariance (F approach) or with a tapered covariance (T approach), we propose to use the taper covariance only in the conditioning step (half-taper or HT approach). This enables to speed up the computations and to reduce memory requirements for the conditioning step but also to keep the right short scale variations in the realizations. A criterion based on mean square error of the simulation is derived to help anticipate the similarity of HT to F. Moreover, an index is used to predict the sparsity of the kriging matrix for the conditioning step. Some guides for the choice of the taper function are discussed. The distributions of a series of 1D, 2D and 3D scalar response functions are compared for F, T and HT approaches. The distributions obtained indicate a much better similarity to F with HT than with T.  相似文献   
170.
Truncated pluri-Gaussian simulation (TPGS) is suitable for the simulation of categorical variables that show natural ordering as the TPGS technique can consider transition probabilities. The TPGS assumes that categorical variables are the result of the truncation of underlying latent variables. In practice, only the categorical variables are observed. This translates the practical application of TPGS into a missing data problem in which all latent variables are missing. Latent variables are required at data locations in order to condition categorical realizations to observed categorical data. The imputation of missing latent variables at data locations is often achieved by either assigning constant values or spatially simulating latent variables subject to categorical observations. Realizations of latent variables can be used to condition all model realizations. Using a single realization or a constant value to condition all realizations is the same as assuming that latent variables are known at the data locations and this assumption affects uncertainty near data locations. The techniques for imputation of latent variables in TPGS framework are investigated in this article and their impact on uncertainty of simulated categorical models and possible effects on factors affecting decision making are explored. It is shown that the use of single realization of latent variables leads to underestimation of uncertainty and overestimation of measured resources while the use constant values for latent variables may lead to considerable over or underestimation of measured resources. The results highlight the importance of multiple data imputation in the context of TPGS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号