首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   577篇
  免费   22篇
  国内免费   4篇
测绘学   26篇
大气科学   38篇
地球物理   171篇
地质学   283篇
海洋学   33篇
天文学   26篇
综合类   3篇
自然地理   23篇
  2024年   1篇
  2023年   4篇
  2022年   11篇
  2021年   14篇
  2020年   10篇
  2019年   7篇
  2018年   46篇
  2017年   39篇
  2016年   39篇
  2015年   31篇
  2014年   49篇
  2013年   34篇
  2012年   37篇
  2011年   47篇
  2010年   33篇
  2009年   26篇
  2008年   14篇
  2007年   11篇
  2006年   12篇
  2005年   37篇
  2004年   55篇
  2003年   26篇
  2002年   3篇
  2001年   3篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1984年   1篇
排序方式: 共有603条查询结果,搜索用时 31 毫秒
531.
Soil erosion is one of the most important environmental problems. In the case of small scale areas where soil properties and climate have relatively uniform characteristics, vegetation cover and topography (i.e. ground slope) are the main factors that affect the amount of soil erosion. Lack of vegetation cover on bare soil areas, including forest road side slopes, especially in mountainous regions with steep slopes, may significantly increase the erosion rate. Determining and classifying erosion risks in such areas can help preventing environmental impacts. In this study, remotely sensed data and elevation data were used to extract and classify bare soil erosion risk areas for a study area selected from Hatila Valley Natural Protected Area in northeastern Turkey. High resolution IKONOS imagery was used to apply land use classification in ERDAS Imagine 9.0. To generate erosion risk map of the bare soil areas, classified image was superimposed on top of slope map, generated based on a Digital Elevation Model (DEM) in ArcGIS 9.2. The results indicated that 1.43, 5.85, 34.62, 53.16, and 4.94% of the bare soil areas in the study area were under very low, low, medium, high, and very high erosion risks, respectively. The overall classification accuracy of 82.5% indicated the potential of the proposed methodology.  相似文献   
532.
Izmir, the third largest city and one of the major economic centers in Turkey, has more than three million residents and one-half million buildings. The city, located in a seismically active region in western Anatolia, was a subject of the 1997 RADIUS (Risk Assessment Tools for Diagnosis of Urban Areas against Seismic Disaster) project. In this paper, the seismic hazard of Izmir is investigated through probabilistic seismic hazard assessment. First, the seismic setting of Izmir is presented. Considering the statistics of earthquakes that took place in the region during the period 1900–2005, a simple seismic hazard model is used to facilitate the assessment. To account for modeling uncertainties associated with the values of seismicity parameters, a logic tree procedure is employed in carrying out the seismic hazard computations. The resulting weighted average seismic hazard, presented in terms of peak ground acceleration and associated probability of exceedence, could be considered the “best estimate” of seismic hazard for Izmir. Accordingly, for a return period of 475 years, for rock sites, a PGA value of 0.34 g is calculated. This PGA hazard estimate is close to the current code-recommended design acceleration level for Izmir.  相似文献   
533.
The brackish Bafa Lake located in the southwestern part of Turkey is under stress because of both natural and untreated wastewater effluents. The purpose of this research is to determine spatiotemporal distributions of some physicochemical variables in water column (temperature, salinity, pH, conductivity, dissolved oxygen, NH4–N, NO2–N, NO3–N, oPO4–P, TPO4–P, chlorophyll-a, total suspended solids) and sediment (TN, TC, TOC, TP) and their relationships at coastal stations. In the water column, nitrate and phosphate concentrations showed seasonal variations with high values recorded in winter period. Ammonium was determined as a main source of TIN component. During summer period, a large amount of total phosphorus was found as dissolved organic form. However, in the winter period, inorganic phosphate levels increased at sampling stations. N limitation was a common feature throughout the lake where P-limitation was only observed in summer period. The total phosphorus levels which showed hypereutrophic condition at the western part of the lake changed between 1.55 and 4.99 μM and did not remain in the range for uncontaminated condition. In the lake sediment, a strong relationship was found between TOC and TC levels. Generally, the mean TOC concentrations constitute small amount of TC values in the sampling stations. The results also indicated that a strong correlation exists between TOC and TN values, and TN was greatly regulated by organic sources. In the lake, TOC:TN ratios changed between 5 and 13; the ratio greater than 10 could be an indicator of algal and land plant sources mixing as an organic matter.  相似文献   
534.
The compositional zoning of a garnet population contained within a garnet-grade metapelitic schist from the Lesser Himalayan Sequence of Sikkim (India) provides insight into the rates and kinetic controls of metamorphism, and the extent of chemical equilibration during porphyroblast crystallisation in the sample. Compositional profiles across centrally sectioned garnet crystals representative of the observed crystal size distribution indicate a strong correlation between garnet crystal size and core composition with respect to major end-member components. Systematic steepening of compositional gradients observed from large to small grains is interpreted to reflect a progressive decrease in the growth rate of relatively late-nucleated garnet as a result of an increase in interfacial energies during progressive crystallisation. Numerical simulation of garnet nucleation and growth using an equilibrium approach accounting for chemical fractionation associated with garnet crystallisation reproduces both the observed crystal size distribution and the chemical zoning of the entire garnet population. Simulation of multicomponent intracrystalline diffusion within the population indicates rapid heating along the pressure–temperature path, in excess of 100 \(^{\circ }\)C Myr\(^{-1}\). Radial garnet growth is correspondingly rapid, with minimum rates of 1.4 mm Myr\(^{-1}\). As a consequence of such rapid crystallisation, the sample analysed in this study provides a close to primary record of the integrated history of garnet nucleation and growth. Our model suggests that nucleation of garnet occurred continuously between incipient garnet crystallisation at \(\sim\)520 \(^{\circ }\)C, 4.5 kbar and peak metamorphic conditions at \(\sim\)565 \(^{\circ }\)C, 5.6 kbar. The good fit between the observed and predicted garnet growth zoning suggests that the departure from equilibrium associated with garnet nucleation and growth was negligible, despite the particularly fast rates of metamorphic heating. Consequently, rates of major element diffusion in the intergranular medium during garnet crystallisation are interpreted to have been correspondingly rapid. It is, therefore, possible to simulate the prograde metamorphic history of our sample as a succession of equilibrium states of a chemical system modified by chemical fractionation associated with garnet crystallisation.  相似文献   
535.
Deltas contain sedimentary records that are not only indicative of water‐level changes, but also particularly sensitive to earthquake shaking typically resulting in soft‐sediment‐deformation structures. The Kürk lacustrine delta lies at the south‐western extremity of Lake Hazar in eastern Turkey and is adjacent to the seismogenic East Anatolian Fault, which has generated earthquakes of magnitude 7. This study re‐evaluates water‐level changes and earthquake shaking that have affected the Kürk Delta, combining geophysical data (seismic‐reflection profiles and side‐scan sonar), remote sensing images, historical data, onland outcrops and offshore coring. The history of water‐level changes provides a temporal framework for the depositional record. In addition to the common soft‐sediment deformation documented previously, onland outcrops reveal a record of deformation (fracturing, tilt and clastic dykes) linked to large earthquake‐induced liquefactions and lateral spreading. The recurrent liquefaction structures can be used to obtain a palaeoseismological record. Five event horizons were identified that could be linked to historical earthquakes occurring in the last 1000 years along the East Anatolian Fault. Sedimentary cores sampling the most recent subaqueous sedimentation revealed the occurrence of another type of earthquake indicator. Based on radionuclide dating (137Cs and 210Pb), two major sedimentary events were attributed to the ad 1874 to 1875 East Anatolian Fault earthquake sequence. Their sedimentological characteristics were determined by X‐ray imagery, X‐ray diffraction, loss‐on‐ignition, grain‐size distribution and geophysical measurements. The events are interpreted to be hyperpycnal deposits linked to post‐seismic sediment reworking of earthquake‐triggered landslides.  相似文献   
536.
Geotechnical Engineering has developed many methods for soil improvement so far. One of these methods is the stone column method. The structure of a stone column generally refers to partial change of suitable subsurface ground through a vertical column, poor stone layers which are completely pressed. In general terms, to improve bearing capacity of problematic soft and loose soil is implemented for the resolution of many problems such as consolidation and grounding problems, to ensure filling and splitting slope stability and liquefaction that results from a dynamic load such as earthquake. In this study, stone columns method is preferred as an improvement method, and especially load transfer mechanisms and bearing capacity of floating stone column are focused. The soil model, 32 m in width and 8 m in depth, used in this study is made through Plaxis 2D finite element program. The clay having 5° internal friction angle with different cohesion coefficients (c 10, c 15, c 20 kN/m2) are used in models. In addition, stone columns used for soil improvement are modeled at different internal friction angles (? 35°, ? 40°, ? 45°) and in different s/D ranges (s/D 2, s/D 3), stone column depths (B, 2B, 3B) and diameters (D 600 mm, D 800 mm, D 1000 mm). In the study, maximum acceleration (a max = 1.785 m/s2) was used in order to determine the seismic coefficient used. In these soil models, as maximum acceleration, maximum east–west directional acceleration value of Van Muradiye earthquake that took place in October 23, 2011 was used. As a result, it was determined that the stone column increased the bearing capacity of the soil. In addition, it is observed that the bearing capacity of soft clay soil which has been improved through stone column with both static and earthquake load effect increases as a result of increase in the diameter and depth of the stone column and decreases as a result of the increase in the ranges of stone column. In the conducted study, the bearing capacity of the soil models, which were improved with stone column without earthquake force effect, was calculated as 1.01–3.5 times more on the average, compared to the bearing capacity of the soil models without stone column. On the other hand, the bearing capacity of the soil models with stone columns, which are under the effect of earthquake force, was calculated as 1.02–3.7 times more compared to the bearing capacity of the soil models without stone column.  相似文献   
537.
Sources and chronologies of metal contamination were studied in sediment cores of three lakes of the Rouyn-Noranda mining area (Québec, Canada) affected by atmospheric deposition of anthropogenic contaminants. One of the three lakes also received acid mine drainage. The sediments were dated using 210Pb and 137Cs and analysed for stable Pb isotope ratios and for total concentrations of 15 elements (Ag, Al, Au, Ca, Cu, Cd, Fe, Hg, Mn, Ni, P, Pb, S, Ti, Zn). Stable lead isotopic signatures helped to determine the quantitative contributions of different industrial Pb sources to our sampling sites. This source apportionment showed the dominant influence of the Rouyn-Noranda copper smelter in airborne Pb emissions for the decades following 1926, when industrialization began in the region. The smelter source had a low ratio of 206Pb/207Pb ranging between 0.90 and 1.05, as typical of the Abitibi Archean sulphides. The relationships between element (metal) sedimentary fluxes and anthropogenic Pb fluxes allowed us to infer the origin of the anthropogenic source. These relationships strongly suggest that the copper smelter was (and may still be) an atmospheric source of Cd, Cu, Pb, Zn, Ag and Hg to the surrounding lakes. Our study indicates that the efforts made by the Rouyn-Noranda copper smelter to reduce airborne emissions of metals have been translated in reduced atmospheric metal loadings to the surrounding lakes.  相似文献   
538.
539.
Climate sensitivity and climate state   总被引:1,自引:1,他引:0  
The effective climate feedback/sensitivity, including its components, is a robust first order feature of the Canadian Centre for Climate Modelling and Analysis (CCCma) coupled global climate model (GCM) and presumably of the climate system. Feedback/sensitivity characterizes the surface air temperature response to changes in radiative forcing and is constant, to first order, independent of the nature, history, and magnitude of the forcing and of the changing climate state. This "constancy" can only be approximate, however, and modest second order changes of 10–20% are found in stabilization simulations in which the forcing, based on the IS92a scenario, is fixed (stabilized) at year 2050 and 2100 values and the system is integrated for an additional 1000 years toward a new equilibrium. Both positive and negative feedback mechanisms tend to strengthen, with the balance tilted toward stronger negative feedback and hence weaker climate sensitivity, as the system evolves and warms. Some feedback mechanisms weaken locally, however, and an example of such is the ice/snow albedo feedback which is less effective in areas of the Northern Hemisphere where ice/snow has retreated. Changes in the geographical distribution of the feedbacks are modest and weakening feedback in one region is often counteracted by strengthening feedback in other regions so that global and zonal values do not reflect the dominance of a particular mechanism or region but rather the residual of changes in different components and regions. The overall 10–20% strengthening of the negative feedback (decrease in climate sensitivity) in the CCCma model contrasts with a weakening of negative feedback (increase in climate sensitivity) of over 20% in the Hadley Centre model under similar conditions. The different behaviour in the two models is due primarily to solar cloud feedback with a strengthening of the negative solar cloud feedback in the CCCma model contrasting with a weakening of it in the Hadley Centre model. The importance of processes which determine cloud properties and distribution is again manifest both in determining first order climate feedback/sensitivity and also in determining its second order variation with climate state.  相似文献   
540.
The Eocene–Miocene volcanic and hypabyssal rocks of the El Indio-Pascua Au–Ag–-Cu belt in the southern central Andean flat-slab region are medium–high-K calc-alkaline arc suites, ranging in composition from andesite to rhyolite. A significant transition in magmatic trace element chemistry, coinciding with a pronounced reduction in magma output, occurred in the late-Middle Miocene as documented by 40Ar–39Ar geochronology. The upper Eocene–lower-Middle Miocene rocks exhibit low Sr/Y ratios (<50), minor heavy REE fractionation with Sm/Yb ratios not exceeding 3.5 and, in some cases, minor negative Eu anomalies. In contrast, the largely dacitic rocks erupted after ca. 13 Ma are depleted in Y (10 ppm), have generally high, but variable Sr/Y ratios (30–200), exhibit moderate middle and heavy REE fractionation (Sm/Yb: 3.7–5.9) and lack negative Eu anomalies. The latter features are characteristic of adakitic suites (i.e. slab-melts), but the regional temporal and spatial distribution of arc magmatism precludes a major magma source in the downgoing slab. This evolution is interpreted as reflecting a progressive increase in pressure and the availability of water in the lower-crustal site of magma generation, establishing both garnet and hornblende as major stable phases in the residuum. The pressure in the lower crust increased in response to episodic crustal thickening related to the shallowing of the slab, a process recorded by the incision of three regional pediplains over the period 17–6 Ma. Elimination of the subarc asthenospheric mantle and much of the lithospheric mantle by ca. 10 Ma permitted direct incursion of slab-derived, highly oxidised metal- and volatile-rich supercritical fluids into the lower crust, stimulating melting of mafic, garnet amphibolitic and eclogitic assemblages.The igneous suites emplaced from 36–11 Ma were associated with widespread, and locally intense, epizonal hydrothermal activity, but this was barren of base and precious metals. The shallow-crustal availability of abundant water highlighted in earlier models was therefore not a metallogenetic determinant. Moreover, economic Au–Ag–Cu mineralization, associated with small volumes of dacitic magma, was restricted to the interval 9.5–5 Ma, and was not initiated until at least 3.5 my after the inception of high-pressure magma generation. In contrast to previous metallogenetic studies, we therefore suggest that this petrochemical transition was not inherently favourable for ore formation. We propose that the incursion of highly oxidized supercritical fluids from the slab into the lower crust was ultimately responsible for the brief Late Miocene metallogenetic episode.Electronic Supplementary Material Supplementary material is available in the online version of this article at Editorial handling: V. Bouchot  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号