首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   9篇
  国内免费   3篇
测绘学   13篇
大气科学   18篇
地球物理   116篇
地质学   146篇
海洋学   23篇
天文学   32篇
综合类   3篇
自然地理   44篇
  2024年   1篇
  2021年   3篇
  2020年   8篇
  2019年   6篇
  2018年   13篇
  2017年   5篇
  2016年   18篇
  2015年   7篇
  2014年   21篇
  2013年   25篇
  2012年   18篇
  2011年   22篇
  2010年   24篇
  2009年   29篇
  2008年   25篇
  2007年   22篇
  2006年   14篇
  2005年   23篇
  2004年   12篇
  2003年   18篇
  2002年   14篇
  2001年   12篇
  2000年   10篇
  1999年   7篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有395条查询结果,搜索用时 156 毫秒
391.
The heat waves of 2003 in Western Europe and 2010 in Russia, commonly labelled as rare climatic anomalies outside of previous experience, are often taken as harbingers of more frequent extremes in the global warming-influenced future. However, a recent reconstruction of spring–summer temperatures for WE resulted in the likelihood of significantly higher temperatures in 1540. In order to check the plausibility of this result we investigated the severity of the 1540 drought by putting forward the argument of the known soil desiccation-temperature feedback. Based on more than 300 first-hand documentary weather report sources originating from an area of 2 to 3 million km2, we show that Europe was affected by an unprecedented 11-month-long Megadrought. The estimated number of precipitation days and precipitation amount for Central and Western Europe in 1540 is significantly lower than the 100-year minima of the instrumental measurement period for spring, summer and autumn. This result is supported by independent documentary evidence about extremely low river flows and Europe-wide wild-, forest- and settlement fires. We found that an event of this severity cannot be simulated by state-of-the-art climate models.  相似文献   
392.
393.
Traditional geographic information system (GIS)-overlay routines usually build on relatively simple data models. Topology is – if at all – calculated on the fly for very specific tasks only. If, for example, a change comparison is conducted between two or more polygon layers, the result leads mostly to a complete and also very complex from–to class intersection. A lot of additional processing steps need to be performed to arrive at aggregated and meaningful results. To overcome this problem a new, automated geospatial overlay method in a topologically enabled (multi-scale) framework is presented. The implementation works with polygon and raster layers and uses a multi-scale vector/raster data model developed in the object-based image analysis software eCognition (Trimble Geospatial Imaging, Munich, Germany). Advantages are the use of the software inherent topological relationships in an object-by-object comparison, addressing some of the basic concepts of object-oriented data modeling such as classification, generalization, and aggregation. Results can easily be aggregated to a change-detection layer; change dependencies and the definition of different change classes are interactively possible through the use of a class hierarchy and its inheritance (parent–child class relationships). Implementation is exemplarily shown for a change comparison of CORINE Land Cover data sets. The result is a flexible and transferable solution which is – if parameterized once – fully automated.  相似文献   
394.
Among the risks of CO2 storage is the potential of CO2 leakage into overlaying formations and near-surface potable aquifers. Through a leakage, the CO2 can intrude into protected groundwater resources, which can lead to groundwater acidification followed by potential mobilisation of heavy metals and other trace metals through mineral dissolution or ion exchange processes. The prediction of pH buffer reactions in the formations overlaying a CO2 storage site is essential for assessing the impact of CO2 leakages in terms of trace metal mobilisation. For buffering the pH-value, calcite dissolution is one of the most important mechanisms. Although calcite dissolution has been studied for decades, experiments conducted under elevated CO2 partial pressures are rare. Here, the first study for column experiments is presented applying CO2 partial pressures from 6 to 43 bars and realising a near-natural flow regime. Geochemical calculations of calcite dissolution kinetics were conducted using PHREEQC together with different thermodynamic databases. Applying calcite surface areas, which were previously acquired by N2-BET or calculated based on grain diameters, respectively, to the rate laws according to Plummer et al. (Am J Sci 278:179–216, doi:10.2475/ajs.278.2.179, 1978) or Palandri and Kharaka (US Geol Surv Open file Rep 2004–1068:71, 2004) in the numerical simulations led to an overestimation of the calcite dissolution rate by up to three orders of magnitude compared to the results of the column experiments. Only reduction of the calcite surface area in the simulations as a fitting procedure allowed reproducing the experimental results. A reason may be that the diffusion boundary layer (DBL), which depends on the groundwater flow velocity and develops at the calcite grain surface separating it from the bulk of the solution, has to be regarded: The DBL leads to a decrease in the calcite dissolution rate under natural laminar flow conditions compared to turbulent mixing in traditional batch experiments. However, varying the rate constants by three orders of magnitudes in a field scale PHREEQC model simulating a CO2 leakage produced minor variations in the pH buffering through calcite dissolution. This justifies the use of equilibrium models when calculating the calcite dissolution in CO2 leakage scenarios for porous aquifers and slow or moderate groundwater flow velocities. However, the selection of the thermodynamic database has an impact on the dissolved calcium concentration, leading to an uncertainty in the simulation results. The resulting uncertainty, which applies also to the calculated propagation of an aquifer zone depleted in calcite through dissolution, seems negligible for shallow aquifers of approximately 60 m depth, but amounts to 35 % of the calcium concentration for aquifers at a depth of approximately 400 m.  相似文献   
395.
In Western Corsica, remnants of pre-batholitic lithological and metamorphic assemblages are preserved as km-scale septa enclosed within Lower Carboniferous to Early Permian plutons. Two groups of septa were recognized: (1) the Argentella and Agriates-Tenda fragments correspond to Neoproterozoic rocks deformed and metamorphosed during the Cadomian–Panafrican orogeny, and (2) the Zicavo, Porto-Vecchio, Solenzara–Fautea, Belgodère, Topiti, and Vignola fragments consist of Variscan metamorphic rocks. The lithological content and the main ductile deformation events for each septum are presented. In the Zicavo, Porto-Vecchio, and Topiti septa, a top-to-the-SW ductile shearing (D1 event) coeval with an amphibolite facies metamorphism is responsible for crustal thickening at ca 360 Ma. This main event was preceded by eclogite and granulite facies metamorphic events preserved as restites within migmatites dated at ca 345–330 Ma. A top-to-the-SE ductile shearing (D2 event) coeval with the crustal melting accommodated the exhumation of the D1 event. In contrast, the Belgodère segment is peculiar as it exhibits a top-to-the-E vergence, although retrogressed high-pressure rocks are also recognized. The pre-Permian fragments are arranged in four NW–SE-striking stripes that define a SW–NE zoning with (1) a Western domain in Topiti, Vignola, Zicavo, Porto-Vecchio, and Solenzara–Fautea; (2) a Neoproterozoic basement with its unconformable Early Paleozoic sedimentary cover in Argentella; (3) an Eastern metamorphic domain in Belgodère; (4) another Neoproterozoic basement with its Upper Paleozoic sedimentary cover in Agriates-Tenda. The Argentella basement is separated from the Western and Eastern domains by two sutures: S1 and S2. The Variscan Corsica represents the Eastern part of the Sardinia–Corsica–Maures segment. The comparison of this segment with other Variscan domains allows us to propose some possible correlations. We argue that the Western domain, Argentella, Belgodère, and Agriates-Tenda domains can be compared with the Southern Variscan belt exposed in French Massif Central–Southern Massif Armoricain, Armorica microblock, Léon block, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号